
R (BGU course)

Jonathan D. Rosenblatt

2019-10-10

2

Contents

1 Preface 7
1.1 Notation Conventions . 7
1.2 Acknowledgements . 7

2 Introduction 9
2.1 What is R? . 9
2.2 The R Ecosystem . 9
2.3 Bibliographic Notes . 10

3 R Basics 11
3.1 File types . 12
3.2 Simple calculator . 12
3.3 Probability calculator . 12
3.4 Getting Help . 13
3.5 Variable Assignment . 13
3.6 Missing . 15
3.7 Piping . 15
3.8 Vector Creation and Manipulation . 16
3.9 Search Paths and Packages . 16
3.10 Simple Plotting . 17
3.11 Object Types . 19
3.12 Data Frames . 20
3.13 Exctraction . 21
3.14 Augmentations of the data.frame class . 22
3.15 Data Import and Export . 22
3.16 Functions . 24
3.17 Looping . 25
3.18 Apply . 26
3.19 Recursion . 27
3.20 Strings . 27
3.21 Dates and Times . 29
3.22 Complex Objects . 32
3.23 Vectors and Matrix Products . 32
3.24 RStudio Projects . 35
3.25 Bibliographic Notes . 35
3.26 Practice Yourself . 35

4 data.table 37
4.1 Make your own variables . 43
4.2 Join . 43
4.3 Reshaping data . 44
4.4 Bibliographic Notes . 46
4.5 Practice Yourself . 47

5 Exploratory Data Analysis 49
5.1 Summary Statistics . 49

3

CONTENTS CONTENTS

5.2 Visualization . 54
5.3 Mixed Type Data . 62
5.4 Bibliographic Notes . 63
5.5 Practice Yourself . 63

6 Linear Models 65
6.1 Problem Setup . 65
6.2 OLS Estimation in R . 67
6.3 Inference . 70
6.4 Extra Diagnostics . 78
6.5 Bibliographic Notes . 79
6.6 Practice Yourself . 79

7 Generalized Linear Models 81
7.1 Problem Setup . 81
7.2 Logistic Regression . 82
7.3 Poisson Regression . 87
7.4 Extensions . 88
7.5 Bibliographic Notes . 89
7.6 Practice Yourself . 89

8 Linear Mixed Models 91
8.1 Problem Setup . 92
8.2 LMMs in R . 93
8.3 Serial Correlations in Space/Time . 98
8.4 Extensions . 100
8.5 Bibliographic Notes . 100
8.6 Practice Yourself . 101

9 Multivariate Data Analysis 103
9.1 Signal Detection . 103
9.2 Signal Counting . 107
9.3 Signal Identification . 107
9.4 Signal Estimation (*) . 109
9.5 Bibliographic Notes . 109
9.6 Practice Yourself . 109

10 Supervised Learning 111
10.1 Problem Setup . 112
10.2 Supervised Learning in R . 115
10.3 Bibliographic Notes . 127
10.4 Practice Yourself . 128

11 Unsupervised Learning 129
11.1 Dimensionality Reduction . 129
11.2 Clustering . 145
11.3 Bibliographic Notes . 150
11.4 Practice Yourself . 151

12 Plotting 153
12.1 The graphics System . 153
12.2 The ggplot2 System . 163
12.3 Interactive Graphics . 173
12.4 Other R Interfaces to JavaScript Plotting . 174
12.5 Bibliographic Notes . 174
12.6 Practice Yourself . 174

13 Reports 177
13.1 knitr . 177

4

CONTENTS CONTENTS

13.2 bookdown . 180
13.3 Shiny . 180
13.4 flexdashboard . 184
13.5 Bibliographic Notes . 184
13.6 Practice Yourself . 184

14 Sparse Representations 185
14.1 Sparse Matrix Representations . 187
14.2 Sparse Matrices and Sparse Models in R . 188
14.3 Beyond Sparsity . 191
14.4 Apache Arrow . 191
14.5 Bibliographic Notes . 192
14.6 Practice Yourself . 192

15 Memory Efficiency 193
15.1 Efficient Computing from RAM . 193
15.2 Computing from a Database . 195
15.3 Computing From Efficient File Structrures . 196
15.4 ff . 198
15.5 disk.frame . 200
15.6 matter . 200
15.7 iotools . 200
15.8 HDF5 . 200
15.9 DelayedArray . 200
15.10Computing from a Distributed File System . 200
15.11Bibliographic Notes . 201
15.12Practice Yourself . 201

16 Parallel Computing 203
16.1 When and How to Parallelise? . 203
16.2 Terminology . 204
16.3 Parallel R . 204
16.4 Parallel Extensions . 208
16.5 Caution: Nested Parallelism . 214
16.6 Bibliographic Notes . 215
16.7 Practice Yourself . 215

17 Numerical Linear Algebra 217
17.1 LU Factorization . 217
17.2 Cholesky Factorization . 217
17.3 QR Factorization . 218
17.4 Singular Value Factorization . 218
17.5 Iterative Methods . 218
17.6 Solving the OLS Problem . 218
17.7 Numerical Libraries for Linear Algebra . 219
17.8 Bibliographic Notes . 219
17.9 Practice Yourself . 219

18 Convex Optimization 221
18.1 Theoretical Backround . 221
18.2 Optimizing with R . 221
18.3 Bibliographic Notes . 221
18.4 Practice Yourself . 221

19 RCpp 223
19.1 Bibliographic Notes . 223
19.2 Practice Yourself . 223

5

CONTENTS CONTENTS

20 Debugging Tools 225
20.1 Bibliographic Notes . 225
20.2 Practice Yourself . 225

21 The Hadleyverse 227
21.1 readr . 227
21.2 dplyr . 227
21.3 tidyr . 232
21.4 reshape2 . 232
21.5 stringr . 232
21.6 anytime . 232
21.7 Biblipgraphic Notes . 232
21.8 Practice Yourself . 232

22 Causal Inferense 233
22.1 Causal Inference From Designed Experiments . 234
22.2 Causal Inference from Observational Data . 234
22.3 Bibliographic Notes . 234
22.4 Practice Yourself . 234

6

Chapter 1

Preface

This book accompanies BGU’s “R” course, at the department of Industrial Engineering and Management. It has
several purposes:

• Help me organize and document the course material.
• Help students during class so that they may focus on listening and not writing.
• Help students after class, so that they may self-study.

At its current state it is experimental. It can thus be expected to change from time to time, and include mistakes. I
will be enormously grateful to whoever decides to share with me any mistakes found.

I am enormously grateful to Yihui Xie, who’s bookdown R package made it possible to easily write a book which has
many mathematical formulae, and R output.

I hope the reader will find this text interesting and useful.

For reproducing my results you will want to run set.seed(1).

1.1 Notation Conventions
In this text we use the following conventions: Lower case 𝑥 may be a vector or a scalar, random of fixed, as implied by
the context. Upper case 𝐴 will stand for matrices. Equality = is an equality, and ∶= is a definition. Norm functions
are denoted with ‖𝑥‖ for vector norms, and ‖𝐴‖ for matrix norms. The type of norm is indicated in the subscript; e.g.
‖𝑥‖2 for the Euclidean (𝑙2) norm. Tag, 𝑥′ is a transpose. The distribution of a random vector is ∼.

1.2 Acknowledgements
I have consulted many people during the writing of this text. I would like to thank Yoav Kessler1, Lena Novack2,
Efrat Vilenski, Ron Sarafian, and Liad Shekel in particular, for their valuable inputs.

1https://kesslerlab.wordpress.com/
2http://fohs.bgu.ac.il/research/profileBrief.aspx?id=VeeMVried

7

https://kesslerlab.wordpress.com/
http://fohs.bgu.ac.il/research/profileBrief.aspx?id=VeeMVried

1.2. ACKNOWLEDGEMENTS CHAPTER 1. PREFACE

8

Chapter 2

Introduction

2.1 What is R?
R was not designed to be a bona-fide programming language. It is an evolution of the S language, developed at Bell
labs (later Lucent) as a wrapper for the endless collection of statistical libraries they wrote in Fortran.

As of 2011, half of R’s libraries are actually written in C1.

2.2 The R Ecosystem
A large part of R’s success is due to the ease in which a user, or a firm, can augment it. This led to a large community
of users, developers, and protagonists. Some of the most important parts of R’s ecosystem include:

• CRAN2: a repository for R packages, mirrored worldwide.

• R-help3: an immensely active mailing list. Noways being replaced by StackExchange meta-site. Look for the R
tags in the StackOverflow4 and CrossValidated5 sites.

• Task Views6: part of CRAN that collects packages per topic.

• Bioconductor7: A CRAN-like repository dedicated to the life sciences.

• Neuroconductor8: A CRAN-like repository dedicated to neuroscience, and neuroimaging.

• Books9: An insane amount of books written on the language. Some are free, some are not.

• The Israeli-R-user-group10: just like the name suggests.

• Commercial R: being open source and lacking support may seem like a problem that would prohibit R from being
adopted for commercial applications. This void is filled by several very successful commercial versions such as
Microsoft R11, with its accompanying CRAN equivalent called MRAN12, Tibco’s Spotfire13, and others14.

1https://wrathematics.github.io/2011/08/27/how-much-of-r-is-written-in-r/
2https://cran.r-project.org/
3https://www.r-project.org/mail.html
4http://stackoverflow.com/
5http://stats.stackexchange.com/
6https://cran.r-project.org/web/views/
7https://www.bioconductor.org/
8https://www.neuroconductor.org/
9https://www.r-project.org/doc/bib/R-books.html

10https://groups.google.com/forum/#!forum/israel-r-user-group
11https://mran.microsoft.com/open/
12https://mran.microsoft.com/
13http://spotfire.tibco.com/discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-enterprise-runtime-for-r-terr
14https://en.wikipedia.org/wiki/R_(programming_language)#Commercial_support_for_R

9

https://wrathematics.github.io/2011/08/27/how-much-of-r-is-written-in-r/
https://cran.r-project.org/
https://www.r-project.org/mail.html
http://stackoverflow.com/
http://stats.stackexchange.com/
https://cran.r-project.org/web/views/
https://www.bioconductor.org/
https://www.neuroconductor.org/
https://www.r-project.org/doc/bib/R-books.html
https://groups.google.com/forum/#!forum/israel-r-user-group
https://mran.microsoft.com/open/
https://mran.microsoft.com/
http://spotfire.tibco.com/discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-enterprise-runtime-for-r-terr
https://en.wikipedia.org/wiki/R_(programming_language)#Commercial_support_for_R

2.3. BIBLIOGRAPHIC NOTES CHAPTER 2. INTRODUCTION

• RStudio15: since its earliest days R came equipped with a minimal text editor. It later received plugins for major
integrated development environments (IDEs) such as Eclipse, WinEdit and even VisualStudio16. None of these,
however, had the impact of the RStudio IDE. Written completely in JavaScript, the RStudio IDE allows the
seamless integration of cutting edge web-design technologies, remote access, and other killer features, making it
today’s most popular IDE for R.

• CheatSheets17 Rstudio curates a list of CheatSheets. Very useful to print some, and have them around when
coding.

• RStartHere18: a curated list of useful packages.

2.3 Bibliographic Notes
For more on the history of R see AT&T’s site19, John Chamber’s talk at UserR!201420, Nick Thieme’s recent report21

in Significance, or Revolution Analytics’22 blog.

You can also consult the Introduction chapter of the MASS book (Venables and Ripley, 2013).

15https://www.rstudio.com/products/rstudio/download-server/
16https://www.visualstudio.com/vs/rtvs/
17https://www.rstudio.com/resources/cheatsheets/
18https://github.com/rstudio/RStartHere/blob/master/README.md#import
19http://www.research.att.com/articles/featured_stories/2013_09/201309_SandR.html?fbid=Yxy4qyQzmMa
20https://www.youtube.com/watch?v=_hcpuRB5nGs
21https://rss.onlinelibrary.wiley.com/doi/10.1111/j.1740-9713.2018.01169.x
22https://blog.revolutionanalytics.com/2017/10/updated-history-of-r.html

10

https://www.rstudio.com/products/rstudio/download-server/
https://www.visualstudio.com/vs/rtvs/
https://www.rstudio.com/resources/cheatsheets/
https://github.com/rstudio/RStartHere/blob/master/README.md#import
http://www.research.att.com/articles/featured_stories/2013_09/201309_SandR.html?fbid=Yxy4qyQzmMa
https://www.youtube.com/watch?v=_hcpuRB5nGs
https://rss.onlinelibrary.wiley.com/doi/10.1111/j.1740-9713.2018.01169.x
https://blog.revolutionanalytics.com/2017/10/updated-history-of-r.html

Chapter 3

R Basics

We now start with the basics of R. If you have any experience at all with R, you can probably skip this section.

First, make sure you work with the RStudio IDE. Some useful pointers for this IDE include:

• Ctrl+Return(Enter) to run lines from editor.
• Alt+Shift+k for RStudio keyboard shortcuts.
• Ctrl+r to browse the command history.
• Alt+Shift+j to navigate between code sections
• tab for auto-completion
• Ctrl+1 to skip to editor.
• Ctrl+2 to skip to console.
• Ctrl+8 to skip to the environment list.
• Ctrl + Alt + Shift + M to select all instances of the selection (for refactoring).
• Code Folding:

– Alt+l collapse chunk.
– Alt+Shift+l unfold chunk.
– Alt+o collapse all.
– Alt+Shift+o unfold all.

• Alt+“-” for the assignment operator <-.

3.0.1 Other IDEs
Currently, I recommend RStudio, but here are some other IDEs:

1. Jupyter Lab: a very promising IDE, originally designed for Python, that also supports R. At the time of writing,
it seems that RStudio is more convenient for R, but it is definitely an IDE to follow closely. See Max Woolf’s1

review.

2. Eclipse: If you are a Java programmer, you are probably familiar with Eclipse, which does have an R plugin:
StatEt2.

3. Emacs: If you are an Emacs fan, you can find an R plugin: ESS3.

4. Vim: Vim-R4.

5. Visual Studio also supports R5. If you need R for commercial purposes, it may be worthwhile trying Microsoft’s
R, instead of the usual R. See here6 for installation instructions.

6. Online version (currently alpha): R Studio Cloud7.
1http://minimaxir.com/2017/06/r-notebooks/
2http://www.walware.de/goto/statet
3http://ess.r-project.org/
4https://github.com/vim-scripts/Vim-R-plugin
5https://www.visualstudio.com/vs/features/rtvs/
6https://mran.microsoft.com/documents/rro/installation
7https://rstudio.cloud

11

http://minimaxir.com/2017/06/r-notebooks/
http://www.walware.de/goto/statet
http://ess.r-project.org/
https://github.com/vim-scripts/Vim-R-plugin
https://www.visualstudio.com/vs/features/rtvs/
https://mran.microsoft.com/documents/rro/installation
https://rstudio.cloud

3.1. FILE TYPES CHAPTER 3. R BASICS

3.1 File types
The file types you need to know when using R are the following:

• .R: An ASCII text file containing R scripts only.
• .Rmd: An ASCII text file. If opened in RStudio can be run as an R-Notebook or compiled using knitr,

bookdown, etc.

3.2 Simple calculator
R can be used as a simple calculator. Create a new R Notebook (.Rmd file) within RStudio using File-> New -> R
Notebook, and run the following commands.
10+5

[1] 15
70*81

[1] 5670
2**4

[1] 16
2^4

[1] 16
log(10)

[1] 2.302585
log(16, 2)

[1] 4
log(1000, 10)

[1] 3

3.3 Probability calculator
R can be used as a probability calculator. You probably wish you knew this when you did your Intro To Probability
classes.

The Binomial distribution function:
dbinom(x=3, size=10, prob=0.5) # Compute P(X=3) for X~B(n=10, p=0.5)

[1] 0.1171875

Notice that arguments do not need to be named explicitly
dbinom(3, 10, 0.5)

[1] 0.1171875

The Binomial cumulative distribution function (CDF):
pbinom(q=3, size=10, prob=0.5) # Compute P(X<=3) for X~B(n=10, p=0.5)

[1] 0.171875

The Binomial quantile function:
qbinom(p=0.1718, size=10, prob=0.5) # For X~B(n=10, p=0.5) returns k such that P(X<=k)=0.1718

12

CHAPTER 3. R BASICS 3.4. GETTING HELP

[1] 3

Generate random variables:
rbinom(n=10, size=10, prob=0.5)

[1] 4 4 5 7 4 7 7 6 6 3

R has many built-in distributions. Their names may change, but the prefixes do not:

• d prefix for the distribution function.
• p prefix for the cummulative distribution function (CDF).
• q prefix for the quantile function (i.e., the inverse CDF).
• r prefix to generate random samples.

Demonstrating this idea, using the CDF of several popular distributions:

• pbinom() for the Binomial CDF.
• ppois() for the Poisson CDF.
• pnorm() for the Gaussian CDF.
• pexp() for the Exponential CDF.

For more information see ?distributions.

3.4 Getting Help
One of the most important parts of working with a language, is to know where to find help. R has several in-line
facilities, besides the various help resources in the R ecosystem.

Get help for a particular function.
?dbinom
help(dbinom)

If you don’t know the name of the function you are looking for, search local help files for a particular string:
??binomial
help.search('dbinom')

Or load a menu where you can navigate local help in a web-based fashion:
help.start()

3.5 Variable Assignment
Assignment of some output into an object named “x”:
x = rbinom(n=10, size=10, prob=0.5) # Works. Bad style.
x <- rbinom(n=10, size=10, prob=0.5)

If you are familiar with other programming languages you may prefer the = assignment rather than the <- assignment.
We recommend you make the effort to change your preferences. This is because thinking with <- helps to read
your code, distinguishes between assignments and function arguments: think of function(argument=value) versus
function(argument<-value). It also helps understand special assignment operators such as <<- and ->.

Remark. Style: We do not discuss style guidelines in this text, but merely remind the reader that good style is
extremely important. When you write code, think of other readers, but also think of future self. See Hadley’s style
guide8 for more.

To print the contents of an object just type its name
x

[1] 7 4 6 3 4 5 2 5 7 4
8http://adv-r.had.co.nz/Style.html

13

http://adv-r.had.co.nz/Style.html

3.5. VARIABLE ASSIGNMENT CHAPTER 3. R BASICS

which is an implicit call to
print(x)

[1] 7 4 6 3 4 5 2 5 7 4

Alternatively, you can assign and print simultaneously using parenthesis.
(x <- rbinom(n=10, size=10, prob=0.5)) # Assign and print.

[1] 5 5 5 4 6 6 6 3 6 5

Operate on the object
mean(x) # compute mean

[1] 5.1
var(x) # compute variance

[1] 0.9888889
hist(x) # plot histogram

Histogram of x

x

F
re

qu
en

cy

3.0 3.5 4.0 4.5 5.0 5.5 6.0

0
1

2
3

4

R saves every object you create in RAM9. The collection of all such objects is the workspace which you can inspect
with
ls()

[1] "x"

or with Ctrl+8 in RStudio.

If you lost your object, you can use ls with a text pattern to search for it
ls(pattern='x')

[1] "x"

To remove objects from the workspace:
rm(x) # remove variable
ls() # verify

character(0)

You may think that if an object is removed then its memory is freed. This is almost true, and depends on a negotiation
mechanism between R and the operating system. R’s memory management is discussed in Chapter 15.

9S and S-Plus used to save objects on disk. Working from RAM has advantages and disadvantages. More on this in Chapter 15.

14

CHAPTER 3. R BASICS 3.6. MISSING

3.6 Missing
Unlike typically programming, when working with real life data, you may have missing values: measurements that were
simply not recorded/stored/etc. R has rather sophisticated mechanisms to deal with missing values. It distinguishes
between the following types:

1. NA: Not Available entries.
2. NaN: Not a number.

R tries to defend the analyst, and return an error, or NA when the presence of missing values invalidates the calculation:
missing.example <- c(10,11,12,NA)
mean(missing.example)

[1] NA

Most functions will typically have an inner mechanism to deal with these. In the mean function, there is an na.rm
argument, telling R how to Remove NAs.
mean(missing.example, na.rm = TRUE)

[1] 11

A more general mechanism is removing these manually:
clean.example <- na.omit(missing.example)
mean(clean.example)

[1] 11

3.7 Piping
Because R originates in Unix and Linux environments, it inherits much of its flavor. Piping10 is an idea taken from the
Linux shell which allows to use the output of one expression as the input to another. Piping thus makes code easier
to read and write.

Remark. Volleyball fans may be confused with the idea of spiking a ball from the 3-meter line, also called piping11.
So: (a) These are very different things. (b) If you can pipe, ASA-BGU12 is looking for you!

Prerequisites:
library(magrittr) # load the piping functions
x <- rbinom(n=1000, size=10, prob=0.5) # generate some toy data

Examples
x %>% var() # Instead of var(x)
x %>% hist() # Instead of hist(x)
x %>% mean() %>% round(2) %>% add(10)

The next example13 demonstrates the benefits of piping. The next two chunks of code do the same thing. Try parsing
them in your mind:
Functional (onion) style
car_data <-
transform(aggregate(. ~ cyl,

data = subset(mtcars, hp > 100),
FUN = function(x) round(mean(x, 2))),

kpl = mpg*0.4251)

10http://ryanstutorials.net/linuxtutorial/piping.php
11https://www.youtube.com/watch?v=DEaj4X_JhSY
12http://in.bgu.ac.il/sport/Pages/asa.aspx
13Taken from http://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html

15

http://ryanstutorials.net/linuxtutorial/piping.php
https://www.youtube.com/watch?v=DEaj4X_JhSY
http://in.bgu.ac.il/sport/Pages/asa.aspx
http://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html

3.8. VECTOR CREATION AND MANIPULATION CHAPTER 3. R BASICS

Piping (magrittr) style
car_data <-
mtcars %>%
subset(hp > 100) %>%
aggregate(. ~ cyl, data = ., FUN = . %>% mean %>% round(2)) %>%
transform(kpl = mpg %>% multiply_by(0.4251)) %>%
print

Tip: RStudio has a keyboard shortcut for the %>% operator. Try Ctrl+Shift+m.

3.8 Vector Creation and Manipulation
The most basic building block in R is the vector. We will now see how to create them, and access their elements
(i.e. subsetting). Here are three ways to create the same arbitrary vector:
c(10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21) # manually
10:21 # the `:` operator
seq(from=10, to=21, by=1) # the seq() function

Let’s assign it to the object named “x”:
x <- c(10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)

Operations usually work element-wise:
x+2

[1] 12 13 14 15 16 17 18 19 20 21 22 23
x*2

[1] 20 22 24 26 28 30 32 34 36 38 40 42
x^2

[1] 100 121 144 169 196 225 256 289 324 361 400 441
sqrt(x)

[1] 3.162278 3.316625 3.464102 3.605551 3.741657 3.872983 4.000000
[8] 4.123106 4.242641 4.358899 4.472136 4.582576
log(x)

[1] 2.302585 2.397895 2.484907 2.564949 2.639057 2.708050 2.772589
[8] 2.833213 2.890372 2.944439 2.995732 3.044522

3.9 Search Paths and Packages
R can be easily extended with packages, which are merely a set of documented functions, which can be loaded or
unloaded conveniently. Let’s look at the function read.csv. We can see its contents by calling it without arguments:
read.csv

function (file, header = TRUE, sep = ",", quote = "\"", dec = ".",
fill = TRUE, comment.char = "", ...)
read.table(file = file, header = header, sep = sep, quote = quote,
dec = dec, fill = fill, comment.char = comment.char, ...)
<bytecode: 0x5632d75a08a8>
<environment: namespace:utils>

Never mind what the function does. Note the environment: namespace:utils line at the end. It tells us that this
function is part of the utils package. We did not need to know this because it is loaded by default. Here are some
packages that I have currently loaded:

16

CHAPTER 3. R BASICS 3.10. SIMPLE PLOTTING

search()

[1] ".GlobalEnv" "package:DT" "package:usethis"
[4] "package:devtools" "package:h2o" "package:sparklyr"
[7] "package:doMC" "package:nycflights13" "package:doSNOW"
[10] "package:snow" "package:doParallel" "package:parallel"
[13] "package:iterators" "package:biganalytics" "package:bigmemory"
[16] "package:dplyr" "package:biglm" "package:DBI"
[19] "package:MatrixModels" "package:plotly" "package:kernlab"
[22] "package:scales" "package:plyr" "package:class"
[25] "package:caret" "package:rpart" "package:nnet"
[28] "package:e1071" "package:glmnet" "package:foreach"
[31] "package:ellipse" "package:nlme" "package:lattice"
[34] "package:lme4" "package:Matrix" "package:multcomp"
[37] "package:TH.data" "package:survival" "package:mvtnorm"
[40] "package:MASS" "package:ggalluvial" "package:hexbin"
[43] "package:ggExtra" "package:gdtools" "package:ggiraph"
[46] "package:viridis" "package:viridisLite" "package:ggplot2"
[49] "package:packcircles" "package:sunburstR" "package:data.table"
[52] "package:lubridate" "package:magrittr" "tools:rstudio"
[55] "package:stats" "package:graphics" "package:grDevices"
[58] "package:utils" "package:datasets" "package:methods"
[61] "Autoloads" "package:base"

Other packages can be loaded via the library function, or downloaded from the internet using the install.packages
function before loading with library. Note that you can easily speedup package download by using multiple CPUs.
Just call options(Ncpus = XXX), where XXX is the number of CPUs you want to use. Run parallel::detectCores()
if you are unsure how many CPUs you have on your machine.

3.10 Simple Plotting
R has many plotting facilities as we will further detail in the Plotting Chapter 12. We start with the simplest facilities,
namely, the plot function from the graphics package, which is loaded by default.
x<- 1:100
y<- 3+sin(x)
plot(x = x, y = y) # x,y syntax

0 20 40 60 80 100

2.
0

2.
5

3.
0

3.
5

4.
0

x

y

Given an x argument and a y argument, plot tries to present a scatter plot. We call this the x,y syntax. R has another
unique syntax to state functional relations. We call y~x the “tilde” syntax, which originates in works of Wilkinson
and Rogers (1973) and was adopted in the early days of S.
plot(y ~ x, type='l') # y~x syntax

17

3.10. SIMPLE PLOTTING CHAPTER 3. R BASICS

0 20 40 60 80 100

2.
0

2.
5

3.
0

3.
5

4.
0

x

y

The syntax y~x is read as “y is a function of x”. We will prefer the y~x syntax over the x,y syntax since it is easier
to read, and will be very useful when we discuss more complicated models.

Here are some arguments that control the plot’s appearance. We use type to control the plot type, main to control
the main title.
plot(y~x, type='l', main='Plotting a connected line')

0 20 40 60 80 100

2.
0

2.
5

3.
0

3.
5

4.
0

Plotting a connected line

x

y

We use xlab for the x-axis label, ylab for the y-axis.
plot(y~x, type='h', main='Sticks plot', xlab='Insert x axis label', ylab='Insert y axis label')

0 20 40 60 80 100

2.
0

2.
5

3.
0

3.
5

4.
0

Sticks plot

Insert x axis label

In
se

rt
 y

 a
xi

s
la

be
l

18

CHAPTER 3. R BASICS 3.11. OBJECT TYPES

We use pch to control the point type (pch is acronym for Plotting CHaracter).
plot(y~x, pch=5) # Point type with pcf

0 20 40 60 80 100

2.
0

2.
5

3.
0

3.
5

4.
0

x

y

We use col to control the color, cex (Character EXpansion) for the point size, and abline (y=Bx+A) to add a
straight line.
plot(y~x, pch=10, type='p', col='blue', cex=4)
abline(3, 0.002)

0 20 40 60 80 100

2.
0

2.
5

3.
0

3.
5

4.
0

x

y

For more plotting options run these
example(plot)
example(points)
?plot
help(package='graphics')

When your plotting gets serious, go to Chapter 12.

3.11 Object Types
We already saw that the basic building block of R objects is the vector. Vectors can be of the following types:

• character Where each element is a string, i.e., a sequence of alphanumeric symbols.
• numeric Where each element is a real number14 in double precision15 floating point format.
• integer Where each element is an integer16.
• logical Where each element is either TRUE, FALSE, or NA17

14https://en.wikipedia.org/wiki/Real_number
15https://en.wikipedia.org/wiki/Double-precision_floating-point_format
16https://en.wikipedia.org/wiki/Integer
17R uses a three valued logic18 where a missing value (NA) is neither TRUE, nor FALSE.

19

https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Integer

3.12. DATA FRAMES CHAPTER 3. R BASICS

• complex Where each element is a complex number.
• list Where each element is an arbitrary R object.
• factor Factors are not actually vector objects, but they feel like such. They are used to encode any finite set of

values. This will be very useful when fitting linear model because they include information on contrasts, i.e., on
the encoding of the factors levels. You should always be alert and recall when you are dealing with a factor or
with a character vector. They have different behaviors.

Vectors can be combined into larger objects. A matrix can be thought of as the binding of several vectors of the same
type. In reality, a matrix is merely a vector with a dimension attribute, that tells R to read it as a matrix and not a
vector.

If vectors of different types (but same length) are binded, we get a data.frame which is the most fundamental object
in R for data analysis. Data frames are brilliant, but a lot has been learned since their invention. They have thus been
extended in recent years with the tbl class, pronounced [Tibble] (https://cran.r-project.org/web/packages/tibble/
vignettes/tibble.html), and the data.table class.
The latter is discussed in Chapter 4, and is strongly recommended.

3.12 Data Frames
Creating a simple data frame:
x<- 1:10
y<- 3 + sin(x)
frame1 <- data.frame(x=x, sin=y)

Let’s inspect our data frame:
head(frame1)

x sin
1 1 3.841471
2 2 3.909297
3 3 3.141120
4 4 2.243198
5 5 2.041076
6 6 2.720585

Now using the RStudio Excel-like viewer:
View(frame1)

We highly advise against editing the data this way since there will be no documentation of the changes you made.
Always transform your data using scripts, so that everything is documented.

Verifying this is a data frame:
class(frame1) # the object is of type data.frame

[1] "data.frame"

Check the dimension of the data
dim(frame1)

[1] 10 2

Note that checking the dimension of a vector is different than checking the dimension of a data frame.
length(x)

[1] 10

The length of a data.frame is merely the number of columns.
length(frame1)

20

https://cran.r-project.org/web/packages/tibble/vignettes/tibble.html
https://cran.r-project.org/web/packages/tibble/vignettes/tibble.html

CHAPTER 3. R BASICS 3.13. EXCTRACTION

[1] 2

3.13 Exctraction
R provides many ways to subset and extract elements from vectors and other objects. The basics are fairly simple,
but not paying attention to the “personality” of each extraction mechanism may cause you a lot of headache.

For starters, extraction is done with the [operator. The operator can take vectors of many types.

Extracting element with by integer index:
frame1[1, 2] # exctract the element in the 1st row and 2nd column.

[1] 3.841471

Extract column by index:
frame1[,1]

[1] 1 2 3 4 5 6 7 8 9 10

Extract column by name:
frame1[, 'sin']

[1] 3.841471 3.909297 3.141120 2.243198 2.041076 2.720585 3.656987
[8] 3.989358 3.412118 2.455979

As a general rule, extraction with [will conserve the class of the parent object. There are, however, exceptions. Notice
the extraction mechanism and the class of the output in the following examples.
class(frame1[, 'sin']) # extracts a column vector

[1] "numeric"
class(frame1['sin']) # extracts a data frame

[1] "data.frame"
class(frame1[,1:2]) # extracts a data frame

[1] "data.frame"
class(frame1[2]) # extracts a data frame

[1] "data.frame"
class(frame1[2,]) # extract a data frame

[1] "data.frame"
class(frame1$sin) # extracts a column vector

[1] "numeric"

The subset() function does the same
subset(frame1, select=sin)
subset(frame1, select=2)
subset(frame1, select= c(2,0))

If you want to force the stripping of the class attribute when extracting, try the [[mechanism instead of [.
a <- frame1[1] # [extraction
b <- frame1[[1]] # [[extraction
class(a)==class(b) # objects have differing classes

[1] FALSE

21

3.14. AUGMENTATIONS OF THE DATA.FRAME CLASS CHAPTER 3. R BASICS

a==b # objects are element-wise identical

x
[1,] TRUE
[2,] TRUE
[3,] TRUE
[4,] TRUE
[5,] TRUE
[6,] TRUE
[7,] TRUE
[8,] TRUE
[9,] TRUE
[10,] TRUE

The different types of output classes cause different behaviors. Compare the behavior of [on seemingly identical
objects.
frame1[1][1]

x
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
frame1[[1]][1]

[1] 1

If you want to learn more about subsetting see Hadley’s guide19.

3.14 Augmentations of the data.frame class
As previously mentioned, the data.frame class has been extended in recent years. The best known extensions are the
data.table and the tbl. For beginners, it is important to know R’s basics, so we keep focusing on data frames. For
more advanced users, I recommend learning the (amazing) data.table syntax.

3.15 Data Import and Export
For any practical purpose, you will not be generating your data manually. R comes with many importing and exporting
mechanisms which we now present. If, however, you do a lot of data “munging”, make sure to see Hadley-verse Chapter
21. If you work with MASSIVE data sets, read the Memory Efficiency Chapter 15.

3.15.1 Import from WEB
The read.table function is the main importing workhorse. It can import directly from the web.
URL <- 'http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/bone.data'
tirgul1 <- read.table(URL)

Always look at the imported result!
19http://adv-r.had.co.nz/Subsetting.html

22

http://adv-r.had.co.nz/Subsetting.html

CHAPTER 3. R BASICS 3.15. DATA IMPORT AND EXPORT

head(tirgul1)

V1 V2 V3 V4
1 idnum age gender spnbmd
2 1 11.7 male 0.01808067
3 1 12.7 male 0.06010929
4 1 13.75 male 0.005857545
5 2 13.25 male 0.01026393
6 2 14.3 male 0.2105263

Oh dear. read.,table tried to guess the structure of the input, but failed to recognize the header row. Set it manually
with header=TRUE:
tirgul1 <- read.table('data/bone.data', header = TRUE)
head(tirgul1)

3.15.2 Import From Clipboard
TODO:datapasta20

3.15.3 Export as CSV
Let’s write a simple file so that we have something to import
head(airquality) # examine the data to export

Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6
temp.file.name <- tempfile() # get some arbitrary file name
write.csv(x = airquality, file = temp.file.name) # export

Now let’s import the exported file. Being a .csv file, I can use read.csv instead of read.table.
my.data<- read.csv(file=temp.file.name) # import
head(my.data) # verify import

X Ozone Solar.R Wind Temp Month Day
1 1 41 190 7.4 67 5 1
2 2 36 118 8.0 72 5 2
3 3 12 149 12.6 74 5 3
4 4 18 313 11.5 62 5 4
5 5 NA NA 14.3 56 5 5
6 6 28 NA 14.9 66 5 6

Remark. Windows users may need to use “\” instead of “/”.

3.15.4 Export non-CSV files
You can export your R objects in endlessly many ways: If instead of the comma delimiter in .csv you want other
column delimiters, look into ?write.table. If you are exporting only for R users, you can consider exporting as
binary objects with saveRDS, feather::write_feather, or fst::write.fst. See (http://www.fstpackage.org/) for
a comparison.

20https://github.com/MilesMcBain/datapasta

23

http://www.fstpackage.org/
https://github.com/MilesMcBain/datapasta

3.16. FUNCTIONS CHAPTER 3. R BASICS

3.15.5 Reading From Text Files
Some general notes on importing text files via the read.table function. But first, we need to know what is the active
directory. Here is how to get and set R’s active directory:
getwd() #What is the working directory?
setwd() #Setting the working directory in Linux

We can now call the read.table function to import text files. If you care about your sanity, see ?read.table before
starting imports. Some notable properties of the function:

• read.table will try to guess column separators (tab, comma, etc.)
• read.table will try to guess if a header row is present.
• read.table will convert character vectors to factors unless told not to using the stringsAsFactors=FALSE

argument.
• The output of read.table needs to be explicitly assigned to an object for it to be saved.

3.15.6 Writing Data to Text Files
The function write.table is the exporting counterpart of read.table.

3.15.7 .XLS(X) files
Strongly recommended to convert to .csv in Excel, and then import as csv. If you still insist see the xlsx package.

3.15.8 Massive files
The above importing and exporting mechanisms were not designed for massive files. An import function that were
designed for large files is vroom21. But also see the sections on the data.table package (4), Sparse Representation
(14), and Out-of-Ram Algorithms (15) for more on working with massive data files.

3.15.9 Databases
R does not need to read from text files; it can read directly from a database. This is very useful since it allows the
filtering, selecting and joining operations to rely on the database’s optimized algorithms. Then again, if you will only
be analyzing your data with R, you are probably better of by working from a file, without the databases’ overhead.
See Chapter 15 for more on this matter.

3.16 Functions
One of the most basic building blocks of programming is the ability of writing your own functions. A function in R, like
everything else, is an object accessible using its name. We first define a simple function that sums its two arguments
my.sum <- function(x,y) {
return(x+y)

}
my.sum(10,2)

[1] 12

From this example you may notice that:

• The function function tells R to construct a function object.

• Unlike some programming languages, a period (.) is allowed as part of an object’s name.

• The arguments of the function, i.e. (x,y), need to be named but we are not required to specify their class.
This makes writing functions very easy, but it is also the source of many bugs, and slowness of R compared to
type declaring languages (C, Fortran,Java,…).

21https://github.com/r-lib/vroom

24

https://github.com/r-lib/vroom

CHAPTER 3. R BASICS 3.17. LOOPING

• A typical R function does not change objects22 but rather creates new ones. To save the output of my.sum we
will need to assign it using the <- operator.

Here is a (slightly) more advanced function:
my.sum.2 <- function(x, y , absolute=FALSE) {
if(absolute==TRUE) {
result <- abs(x+y)

}
else{
result <- x+y

}
result

}
my.sum.2(-10,2,TRUE)

[1] 8

Things to note:

• if(condition){expression1} else{expression2} does just what the name suggests.

• The function will output its last evaluated expression. You don’t need to use the return function explicitly.

• Using absolute=FALSE sets the default value of absolute to FALSE. This is overridden if absolute is stated
explicitly in the function call.

An important behavior of R is the scoping rules. This refers to the way R seeks for variables used in functions. As a
rule of thumb, R will first look for variables inside the function and if not found, will search for the variable values in
outer environments24. Think of the next example.
a <- 1
b <- 2
x <- 3
scoping <- function(a,b){
a+b+x

}
scoping(10,11)

[1] 24

3.17 Looping
The real power of scripting is when repeated operations are done by iteration. R supports the usual for, while, and
repated loops. Here is an embarrassingly simple example
for (i in 1:5){

print(i)
}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

A slightly more advanced example, is vector multiplication
result <- 0
n <- 1e3

22This is a classical functional programming paradigm. If you want an object oriented flavor of R programming, see Hadley’s Advanced
R book23.

24More formally, this is called Lexical Scoping25.

25

3.18. APPLY CHAPTER 3. R BASICS

x <- 1:n
y <- (1:n)/n
for(i in 1:n){
result <- result+ x[i]*y[i]

}

Remark. Vector Operations: You should NEVER write your own vector and matrix products like in the previous
example. Only use existing facilities such as %*%, sum(), etc.

Remark. Parallel Operations: If you already know that you will be needing to parallelize your work, get used to
working with foreach loops in the foreach package, rather then regular for loops.

3.18 Apply
For applying the same function to a set of elements, there is no need to write an explicit loop. This is such an
elementary operation that every programming language will provide some facility to apply, or map the function to
all elements of a set. R provides several facilities to perform this. The most basic of which is lapply which applies a
function over all elements of a list, and return a list of outputs:
the.list <- list(1,'a',mean) # a list of 3 elements from different classes
lapply(X = the.list, FUN = class) # apply the function `class` to each elements

[[1]]
[1] "numeric"
##
[[2]]
[1] "character"
##
[[3]]
[1] "standardGeneric"
attr(,"package")
[1] "methods"
sapply(X = the.list, FUN = class) # lapply with cleaned output

[1] "numeric" "character" "standardGeneric"

What is the function you are using requires some arguments? One useful trick is to create your own function that
takes only one argument:
quantile.25 <- function(x) quantile(x,0.25)
sapply(USArrests, quantile.25)

Murder.25% Assault.25% UrbanPop.25% Rape.25%
4.075 109.000 54.500 15.075

What if you are applying the same function with two lists of arguments? Use mapply. The following will compute
a different quantile to each column in the data:
quantiles <- c(0.1, 0.5, 0.3, 0.2)
mapply(quantile, USArrests, quantiles)

Murder.10% Assault.50% UrbanPop.30% Rape.20%
2.56 159.00 57.70 13.92

R provides many variations on lapply to facilitate programming. Here is a partial list:

• sapply: The same as lapply but tries to arrange output in a vector or matrix, and not an unstructured list.
• vapply: A safer version of sapply, where the output class is pre-specified.
• apply: For applying over the rows or columns of matrices.
• mapply: For applying functions with more than a single input.
• tapply: For splitting vectors and applying functions on subsets.

26

CHAPTER 3. R BASICS 3.19. RECURSION

• rapply: A recursive version of lapply.
• eapply: Like lapply, only operates on environments instead of lists.
• Map+Reduce: For a Common Lisp26 look and feel of lapply.
• parallel::parLapply: A parallel version of lapply from the package parallel.
• parallel::parLBapply: A parallel version of lapply, with load balancing from the package parallel.

3.19 Recursion
The R compiler is really not designed for recursion, and you will rarely need to do so.
See the RCpp Chapter 19 for linking C code, which is better suited for recursion. If you really insist to write recursions
in R, make sure to use the Recall function, which, as the name suggests, recalls the function in which it is place. Here
is a demonstration with the Fibonacci series.
fib<-function(n) {

if (n <= 2) fn<-1
else fn <- Recall(n - 1) + Recall(n - 2)
return(fn)

}
fib(5)

[1] 5

3.20 Strings
Note: this section is courtesy of Ron Sarafian.

Strings may appear as character vectors,files names, paths (directories), graphing elements, and more.

Strings can be concatenated with the super useful paste function.
a <- "good"
b <- "morning"
is.character(a)

[1] TRUE
paste(a,b)

[1] "good morning"
(c <- paste(a,b, sep = "."))

[1] "good.morning"
paste(a,b,1:3, paste='@@@', collapse = '^^^^')

[1] "good morning 1 @@@^^^^good morning 2 @@@^^^^good morning 3 @@@"

Things to note:

• sep is used to separate strings.
• collapse is used to separate results.

The substr function extract or replace substrings in a character vector:
substr(c, start=2, stop=4)

[1] "ood"
substr(c, start=6, stop=12) <- "evening"

The grep function is a very powerful tool to search for patterns in text. These patterns are called regular expressions27

26https://en.wikipedia.org/wiki/Common_Lisp
27https://en.wikipedia.org/wiki/Regular_expression

27

https://en.wikipedia.org/wiki/Common_Lisp
https://en.wikipedia.org/wiki/Regular_expression

3.20. STRINGS CHAPTER 3. R BASICS

(d <- c(a,b,c))

[1] "good" "morning" "good.evening"
grep(pattern = "good",x = d)

[1] 1 3
grep("good",d, value=TRUE, ignore.case=TRUE)

[1] "good" "good.evening"
grep("([a-zA-Z]+)\\1",d, value=TRUE, perl=TRUE)

[1] "good" "good.evening"

Things to note:

• Use value=TRUE to return the string itself, instead of its index.
• ([a-zA-Z]+)\\1 is a regular expression to find repeating characters. perl=TRUE to activate the Perl28 “flavored”

regular expressions.

Use gsub to replace characters in a string object:
gsub("o", "q", d) # replace the letter "o" with "q".

[1] "gqqd" "mqrning" "gqqd.evening"
gsub("([a-zA-Z]+)\\1", "q", d, perl=TRUE) # replace repeating characters with "q".

[1] "gqd" "morning" "gqd.evening"

The strsplit allows to split string vectors to list:
(x <- c(a = "thiszis", b = "justzan", c = "example"))

a b c
"thiszis" "justzan" "example"
strsplit(x, "z") # split x on the letter z

$a
[1] "this" "is"
##
$b
[1] "just" "an"
##
$c
[1] "example"

Some more examples:
nchar(x) # count the nuber of characters in every element of a string vector.

a b c
7 7 7
toupper(x) # translate characters in character vectors to upper case

a b c
"THISZIS" "JUSTZAN" "EXAMPLE"
tolower(toupper(x)) # vice verca

a b c
"thiszis" "justzan" "example"

28https://en.wikipedia.org/wiki/Perl

28

https://en.wikipedia.org/wiki/Perl

CHAPTER 3. R BASICS 3.21. DATES AND TIMES

letters[1:10] # lower case letters vector

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
LETTERS[1:10] # upper case letters vector

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"
cat("the sum of", 1, "and", 2, "is", 1+2) # concatenate and print strings and values

the sum of 1 and 2 is 3

If you need more than this, look for the stringr29 package that provides a set of internally consistent tools.

3.21 Dates and Times
Note: This Section is courtesy of Ron Sarafian30.

3.21.1 Dates
R provides several packages for dealing with date and date/time data. We start with the base package.

R needs to be informed explicitly that an object holds dates. The as.Date function convert values to dates. You can
pass it a character, a numeric, or a POSIXct (we’ll soon explain what it is).
start <- "1948-05-14"
class(start)

[1] "character"
start <- as.Date(start)
class(start)

[1] "Date"

But what if our date is not in the yyyy-mm-dd format? We can tell R what is the character date’s format.
as.Date("14/5/1948", format="%d/%m/%Y")

[1] "1948-05-14"
as.Date("14may1948", format="%d%b%Y")

[1] "1948-05-14"

Things to note:

• The format of the date is specified with the format= argument. %d for day of the month, / for separation, %m
for month, and %Y for year in four digits. See ?strptime for more available formatting.

• If it returns NA, then use the command Sys.setlocale("LC_TIME","C")

Many functions are content aware, and adapt their behavior when dealing with dates:
(today <- Sys.Date()) # the current date

[1] "2019-10-10"
today + 1 # Add one day

[1] "2019-10-11"
today - start # Diffenrece between dates

Time difference of 26081 days
29https://r4ds.had.co.nz/strings.html
30https://www.linkedin.com/in/ron-sarafian-4a5a95110/

29

https://r4ds.had.co.nz/strings.html
https://www.linkedin.com/in/ron-sarafian-4a5a95110/

3.21. DATES AND TIMES CHAPTER 3. R BASICS

min(start,today)

[1] "1948-05-14"

3.21.2 Times
Specifying times is similar to dates, only that more formatting parameters are required. The POSIXct is the object
class for times. It expects strings to be in the format YYYY-MM-DD HH:MM:SS. With POSIXct you can also specify
the timezone, e.g., "Asia/Jerusalem".
time1 <- Sys.time()
class(time1)

[1] "POSIXct" "POSIXt"
time2 <- time1 + 72*60*60 # add 72 hours
time2-time1

Time difference of 3 days
class(time2-time1)

[1] "difftime"

Things to note:

• Be careful about DST, because as.POSIXct("2019-03-29 01:30")+3600 will not add 1 hour, but 2 with the
result: [1] "2019-03-29 03:30:00 IDT"

Compute differences in your unit of choice:
difftime(time2,time1, units = "hour")

Time difference of 72 hours
difftime(time2,time1, units = "week")

Time difference of 0.4285714 weeks

Generate sequences:
seq(from = time1, to = time2, by = "day")

[1] "2019-10-10 14:52:47 UTC" "2019-10-11 14:52:47 UTC"
[3] "2019-10-12 14:52:47 UTC" "2019-10-13 14:52:47 UTC"
seq(time1, by = "month", length.out = 12)

[1] "2019-10-10 14:52:47 UTC" "2019-11-10 14:52:47 UTC"
[3] "2019-12-10 14:52:47 UTC" "2020-01-10 14:52:47 UTC"
[5] "2020-02-10 14:52:47 UTC" "2020-03-10 14:52:47 UTC"
[7] "2020-04-10 14:52:47 UTC" "2020-05-10 14:52:47 UTC"
[9] "2020-06-10 14:52:47 UTC" "2020-07-10 14:52:47 UTC"
[11] "2020-08-10 14:52:47 UTC" "2020-09-10 14:52:47 UTC"

3.21.3 lubridate Package
The lubridate package replaces many of the base package functionality, with a more consistent interface. You only
need to specify the order of arguments, not their format:
library(lubridate)
ymd("2017/01/31")

[1] "2017-01-31"

30

CHAPTER 3. R BASICS 3.21. DATES AND TIMES

mdy("January 31st, 2017")

[1] "2017-01-31"
dmy("31-Jan-2017")

[1] "2017-01-31"
ymd_hms("2000-01-01 00:00:01")

[1] "2000-01-01 00:00:01 UTC"
ymd_hms("20000101000001")

[1] "2000-01-01 00:00:01 UTC"

Another nice thing in lubridate, is that periods can be created with a number of friendly constructor functions that
you can combine time objects. E.g.:
seconds(1)

[1] "1S"
minutes(c(2,3))

[1] "2M 0S" "3M 0S"
hours(4)

[1] "4H 0M 0S"
days(5)

[1] "5d 0H 0M 0S"
months(c(6,7,8))

[1] "6m 0d 0H 0M 0S" "7m 0d 0H 0M 0S" "8m 0d 0H 0M 0S"
weeks(9)

[1] "63d 0H 0M 0S"
years(10)

[1] "10y 0m 0d 0H 0M 0S"
(t <- ymd_hms("20000101000001"))

[1] "2000-01-01 00:00:01 UTC"
t + seconds(1)

[1] "2000-01-01 00:00:02 UTC"
t + minutes(c(2,3)) + years(10)

[1] "2010-01-01 00:02:01 UTC" "2010-01-01 00:03:01 UTC"

And you can also extract and assign the time components:
t

[1] "2000-01-01 00:00:01 UTC"
second(t)

[1] 1
second(t) <- 26
t

31

3.22. COMPLEX OBJECTS CHAPTER 3. R BASICS

[1] "2000-01-01 00:00:26 UTC"

Analyzing temporal data is different than actually storing it. If you are interested in time-series analysis, try the
tseries, forecast and zoo packages.

3.22 Complex Objects
Say you have a list with many elements, and you want to inspect this list. You can do it using the Environment pane
in RStudio (Ctrl+8), or using the str function:
complex.object <- list(7, 'hello', list(a=7,b=8,c=9), FOO=read.csv)
str(complex.object)

List of 4
$: num 7
$: chr "hello"
$:List of 3
..$ a: num 7
..$ b: num 8
..$ c: num 9
$ FOO:function (file, header = TRUE, sep = ",", quote = "\"", dec = ".",
fill = TRUE, comment.char = "", ...)

Some (very) advanced users may want a deeper look into object. Try the lobstr31 package, or the .Inter-
nal(inspect(…)) function described here32.
x <- c(7,10)
.Internal(inspect(x))

@5632defe0188 14 REALSXP g0c2 [NAM(7)] (len=2, tl=0) 7,10

3.23 Vectors and Matrix Products
This section is courtesy of Ron Sarafian.

If you are operating with numeric vectors, or matrices, you may want to compute products. You can easily write your
own R loops, but it is much more efficient to use the built-in operations.

Definition 3.1 (Matrix Product). The matrix-product between matrix 𝑛 × 𝑚 matrix 𝐴, and 𝑚 × 𝑝 matrix 𝐵, is a
𝑛 × 𝑝 matrix 𝐶, where:

𝑐𝑖,𝑗 ∶=
𝑚

∑
𝑘=1

𝑎𝑖,𝑘𝑏𝑘,𝑗

Vectors can be seen as single row/column matrices. We can thus use matrix products to define the following:

Definition 3.2 (Dot Product). The dot-product, a.k.a. scalar-product, or inner-product, between row-vectors 𝑥 ∶=
(𝑥1, … , 𝑥𝑛) and 𝑦 ∶= (𝑦1, … , 𝑦𝑛) is defined as the matrix product between the 1 × 𝑛 matrix 𝑥′, and the 𝑛 × 1 matrix y:

𝑥′𝑦 ∶= ∑
𝑖

𝑥𝑖𝑦𝑖

Definition 3.3 (Outer Product). The outer product between row-vectors 𝑥 ∶= (𝑥1, … , 𝑥𝑛) and 𝑦 ∶= (𝑦1, … , 𝑦𝑛) is
defined as the matrix product between the 𝑛 × 1 matrix 𝑥, and the 1 × 𝑛 matrix 𝑦′:

(𝑥𝑦′)𝑖,𝑗 ∶= 𝑥𝑖 𝑦𝑗
31https://github.com/r-lib/lobstr/blob/master/README.md
32https://www.brodieg.com/2019/02/18/an-unofficial-reference-for-internal-inspect/

32

https://github.com/r-lib/lobstr/blob/master/README.md
https://www.brodieg.com/2019/02/18/an-unofficial-reference-for-internal-inspect/

CHAPTER 3. R BASICS 3.23. VECTORS AND MATRIX PRODUCTS

Matrix products are computed with the %*% operator:
x <- rnorm(4)
y <- exp(-x)
t(x) %*% y # Dot product.

[,1]
[1,] -3.298627
x %*% y # Dot product.

[,1]
[1,] -3.298627
crossprod(x,y) # Dot product.

[,1]
[1,] -3.298627
crossprod(t(x),y) # Outer product.

[,1] [,2] [,3] [,4]
[1,] -1.5412664 -0.5513476 -1.7862644 -0.5988587
[2,] 0.6075926 0.2173503 0.7041748 0.2360800
[3,] -1.8496379 -0.6616595 -2.1436542 -0.7186764
[4,] 0.4348046 0.1555399 0.5039206 0.1689432
crossprod(t(x),t(y)) # Outer product.

[,1] [,2] [,3] [,4]
[1,] -1.5412664 -0.5513476 -1.7862644 -0.5988587
[2,] 0.6075926 0.2173503 0.7041748 0.2360800
[3,] -1.8496379 -0.6616595 -2.1436542 -0.7186764
[4,] 0.4348046 0.1555399 0.5039206 0.1689432
x %*% t(y) # Outer product

[,1] [,2] [,3] [,4]
[1,] -1.5412664 -0.5513476 -1.7862644 -0.5988587
[2,] 0.6075926 0.2173503 0.7041748 0.2360800
[3,] -1.8496379 -0.6616595 -2.1436542 -0.7186764
[4,] 0.4348046 0.1555399 0.5039206 0.1689432
x %o% y # Outer product

[,1] [,2] [,3] [,4]
[1,] -1.5412664 -0.5513476 -1.7862644 -0.5988587
[2,] 0.6075926 0.2173503 0.7041748 0.2360800
[3,] -1.8496379 -0.6616595 -2.1436542 -0.7186764
[4,] 0.4348046 0.1555399 0.5039206 0.1689432
outer(x,y) # Outer product

[,1] [,2] [,3] [,4]
[1,] -1.5412664 -0.5513476 -1.7862644 -0.5988587
[2,] 0.6075926 0.2173503 0.7041748 0.2360800
[3,] -1.8496379 -0.6616595 -2.1436542 -0.7186764
[4,] 0.4348046 0.1555399 0.5039206 0.1689432

Things to note:

• The definition of the matrix product has to do with the view of a matrix as a linear operator, and not only a
table with numbers. Pick up any linear algebra book to understand why it is defined this way.

• Vectors are matrices. The dot product, is a matrix product where 𝑚 = 1.

33

3.23. VECTORS AND MATRIX PRODUCTS CHAPTER 3. R BASICS

• * is an element-wise product, whereas %*% is a dot product.
• While not specifying whether the vectors are horizontal or vertical, R treats the operation as (1 × 𝑛) ∗ (𝑛 × 1).
• t() is the vector/ matrix transpose.

Now for matrix multiplication:
(x <- rep(1,5))

[1] 1 1 1 1 1
(A <- matrix(data = rep(1:5,5), nrow = 5, ncol = 5, byrow = TRUE)) #

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 1 2 3 4 5
[3,] 1 2 3 4 5
[4,] 1 2 3 4 5
[5,] 1 2 3 4 5
x %*% A # (1X5) * (5X5) => (1X5)

[,1] [,2] [,3] [,4] [,5]
[1,] 5 10 15 20 25
A %*% x # (5X5) * (5X1) => (1X5)

[,1]
[1,] 15
[2,] 15
[3,] 15
[4,] 15
[5,] 15
0.5 * A

[,1] [,2] [,3] [,4] [,5]
[1,] 0.5 1 1.5 2 2.5
[2,] 0.5 1 1.5 2 2.5
[3,] 0.5 1 1.5 2 2.5
[4,] 0.5 1 1.5 2 2.5
[5,] 0.5 1 1.5 2 2.5
A %*% t(A) # Gram matrix

[,1] [,2] [,3] [,4] [,5]
[1,] 55 55 55 55 55
[2,] 55 55 55 55 55
[3,] 55 55 55 55 55
[4,] 55 55 55 55 55
[5,] 55 55 55 55 55
t(x) %*% A %*% x # Quadratic form

[,1]
[1,] 75

Can I write these functions myself? Yes! But a pure-R implementation will be much slower than %*%:
my.crossprod <- function(x,y){
result <- 0
for(i in 1:length(x)) result <- result + x[i]*y[i]
result

}
x <- rnorm(1e8)

34

CHAPTER 3. R BASICS 3.24. RSTUDIO PROJECTS

y <- rnorm(1e8)
system.time(a1 <- my.crossprod(x,y))

user system elapsed
20.826 0.049 20.874
system.time(a2 <- sum(x*y))

user system elapsed
0.241 0.156 0.397
system.time(a3 <- c(x%*%y))

user system elapsed
0.518 0.014 0.159
all.equal(a1,a2)

[1] TRUE
all.equal(a1,a3)

[1] TRUE
all.equal(a2,a3)

[1] TRUE

3.24 RStudio Projects
A Projcet is a feature of RStudio, not R. It allows you to organize the code, the data, and the supporting file of a
whole project. This is very useful when you work on several machines, synched via Dropbox, git, or any other file
synching service. Detailing the full benefits of a RStudio Project will require a lengthy digression. We merely point
out that if you care about portability, and reproducibility, make sure to read the Projects documentation33.

3.25 Bibliographic Notes
There are endlessly many introductory texts on R. For a list of free resources see CrossValidated34. I personally
recommend the official introduction Venables et al. (2004), available online35, or anything else Bill Venables writes.

For Importing and Exporting see (https://cran.r-project.org/doc/manuals/r-release/R-data.html). For working with
databases see (https://rforanalytics.wordpress.com/useful-links-for-r/odbc-databases-for-r/). For a little intro on
time-series objects in R see Cristoph Sax’s blog36. For working with strings see Gaston Sanchez’s book37. For
advanced R programming see Wickham (2014), available online38, or anything else Hadley Wickham writes. For a
curated list of recommended packages see here39.

3.26 Practice Yourself
1. Load the package MASS. That was easy. Now load ggplot2, after looking into install.pacakges().

2. Save the numbers 1 to 1,000,000 (1e6) into an object named object.

3. Write a function that computes the mean of its input. Write a version that uses sum(), and another that uses a
for loop and the summation +. Try checking which is faster using system.time. Is the difference considerable?
Ask me about it in class.

33https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects
34http://stats.stackexchange.com/questions/138/free-resources-for-learning-r
35https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
36http://www.christophsax.com/2018/05/15/tsbox/
37http://www.gastonsanchez.com/r4strings/
38http://adv-r.had.co.nz/
39https://github.com/rstudio/RStartHere/blob/master/README.md

35

https://cran.r-project.org/doc/manuals/r-release/R-data.html
https://rforanalytics.wordpress.com/useful-links-for-r/odbc-databases-for-r/
https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects
http://stats.stackexchange.com/questions/138/free-resources-for-learning-r
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
http://www.christophsax.com/2018/05/15/tsbox/
http://www.gastonsanchez.com/r4strings/
http://adv-r.had.co.nz/
https://github.com/rstudio/RStartHere/blob/master/README.md

3.26. PRACTICE YOURSELF CHAPTER 3. R BASICS

4. Write a function that returns TRUE if a number is divisible by 13, FALSE if not, and a nice warning to the user if
the input is not an integer number.

5. Apply the previous function to all the numbers in object. Try using a for loop, but also a mapping/apply
function.

6. Make a matrix of random numbers using A <- matrix(rnorm(40), ncol=10, nrow=4). Compute the mean of
each column. Do it using your own loop and then do the same with lapply or apply.

7. Make a data frame (dataA) with three columns, and 100 rows. The first column with 100 numbers generated
from the 𝒩(10, 1) distribution, second column with samples from 𝑃𝑜𝑖𝑠𝑠(𝜆 = 4). The third column contains only
1.
Make another data frame (dataB) with three columns and 100 rows. Now with 𝒩(10, 0.52), 𝑃𝑜𝑖𝑠𝑠(𝜆 = 4) and
2. Combine the two data frames into an object named dataAB with rbind. Make a scatter plot of dataAB where
the x-axes is the first column, the y-axes is the second and define the shape of the points to be the third column.

8. In a sample generated of 1,000 observations from the 𝒩(10, 1) distribution:

1. What is the proportion of samples smaller than 12.4 ?
2. What is the 0.23 percentile of the sample?

9. Nothing like cleaning a dataset, to practice your R basics. Have a look at RACHAEL TATMAN40 collected
several datasets which BADLY need some cleansing.

You can also self practice with DataCamp’s Intoroduction to R41 course, or go directly to exercising with R-exercises42.

40https://makingnoiseandhearingthings.com/2018/04/19/datasets-for-data-cleaning-practice/
41https://www.datacamp.com/courses/free-introduction-to-r
42https://www.r-exercises.com/start-here-to-learn-r/

36

https://makingnoiseandhearingthings.com/2018/04/19/datasets-for-data-cleaning-practice/
https://www.datacamp.com/courses/free-introduction-to-r
https://www.r-exercises.com/start-here-to-learn-r/

Chapter 4

data.table

data.table is an excellent extension of the data.frame class1. If used as a data.frame it will look and feel like a
data frame. If, however, it is used with it’s unique capabilities, it will prove faster and easier to manipulate. This is
because data.frames, like most of R objects, make a copy of themselves when modified. This is known as passing by
value2, and it is done to ensure that object are not corrupted if an operation fails (if your computer shuts down before
the operation is completed, for instance). Making copies of large objects is clearly time and memory consuming. A
data.table can make changes in place. This is known as passing by reference3, which is considerably faster than
passing by value.

Let’s start with importing some freely available car sales data from Kaggle4.
library(data.table)
library(magrittr)
auto <- fread('data/autos.csv')

View(auto)

dim(auto) # Rows and columns

[1] 371824 20
names(auto) # Variable names

[1] "dateCrawled" "name" "seller"
[4] "offerType" "price" "abtest"
[7] "vehicleType" "yearOfRegistration" "gearbox"
[10] "powerPS" "model" "kilometer"
[13] "monthOfRegistration" "fuelType" "brand"
[16] "notRepairedDamage" "dateCreated" "nrOfPictures"
[19] "postalCode" "lastSeen"
class(auto) # Object class

[1] "data.table" "data.frame"
file.info('data/autos.csv') # File info on disk

size isdir mode mtime ctime
data/autos.csv 68439217 FALSE 644 2019-02-24 21:52:04 2019-02-24 21:52:04
atime uid gid uname grname
data/autos.csv 2019-10-10 14:54:41 1000 1000 rstudio rstudio

1Not to be confused with DT::datatable() which is an interface for interactive inspection of data tables in your browser.
2https://stackoverflow.com/questions/373419/whats-the-difference-between-passing-by-reference-vs-passing-by-value
3https://stackoverflow.com/questions/373419/whats-the-difference-between-passing-by-reference-vs-passing-by-value
4https://www.kaggle.com/orgesleka/used-cars-database

37

https://stackoverflow.com/questions/373419/whats-the-difference-between-passing-by-reference-vs-passing-by-value
https://stackoverflow.com/questions/373419/whats-the-difference-between-passing-by-reference-vs-passing-by-value
https://www.kaggle.com/orgesleka/used-cars-database

CHAPTER 4. DATA.TABLE

gdata::humanReadable(68439217)

[1] "65.3 MiB"
object.size(auto) %>% print(units = 'auto') # File size in memory

103.3 Mb

Things to note:

• The import has been done with fread instead of read.csv. This is more efficient, and directly creates a
data.table object.

• The import is very fast.
• The data after import is slightly larger than when stored on disk (in this case). The extra data allows faster

operation of this object, and the rule of thumb is to have 3 to 5 times more RAM5 than file size (e.g.: 4GB RAM
for 1GB file)

• auto has two classes. It means that everything that expects a data.frame we can feed it a data.table and it
will work.

Let’s start with verifying that it behaves like a data.frame when expected.
auto[,2] %>% head

name
1: Golf_3_1.6
2: A5_Sportback_2.7_Tdi
3: Jeep_Grand_Cherokee_"Overland"
4: GOLF_4_1_4__3T\xdcRER
5: Skoda_Fabia_1.4_TDI_PD_Classic
6: BMW_316i___e36_Limousine___Bastlerfahrzeug__Export
auto[[2]] %>% head

[1] "Golf_3_1.6"
[2] "A5_Sportback_2.7_Tdi"
[3] "Jeep_Grand_Cherokee_\"Overland\""
[4] "GOLF_4_1_4__3T\xdcRER"
[5] "Skoda_Fabia_1.4_TDI_PD_Classic"
[6] "BMW_316i___e36_Limousine___Bastlerfahrzeug__Export"
auto[1,2] %>% head

name
1: Golf_3_1.6

But notice the difference between data.frame and data.table when subsetting multiple rows. Uhh!
auto[1:3] %>% dim # data.table will exctract *rows*

[1] 3 20
as.data.frame(auto)[1:3] %>% dim # data.frame will exctract *columns*

[1] 371824 3

Just use columns (,) and be explicit regarding the dimension you are extracting…

Now let’s do some data.table specific operations. The general syntax has the form DT[i,j,by]. SQL users may
think of i as WHERE, j as SELECT, and by as GROUP BY. We don’t need to name the arguments explicitly. Also, the Tab
key will typically help you to fill in column names.
auto[,vehicleType,] %>% table # Exctract column and tabulate

.
5https://en.wikipedia.org/wiki/Random-access_memory

38

https://en.wikipedia.org/wiki/Random-access_memory

CHAPTER 4. DATA.TABLE

andere bus cabrio coupe kleinwagen
37899 3362 30220 22914 19026 80098
kombi limousine suv
67626 95963 14716
auto[vehicleType=='coupe',,] %>% dim # Exctract rows

[1] 19026 20
auto[,gearbox:model,] %>% head # exctract column range

gearbox powerPS model
1: manuell 0 golf
2: manuell 190
3: automatik 163 grand
4: manuell 75 golf
5: manuell 69 fabia
6: manuell 102 3er
auto[,gearbox,] %>% table

.
automatik manuell
20223 77169 274432
auto[vehicleType=='coupe' & gearbox=='automatik',,] %>% dim # intersect conditions

[1] 6008 20
auto[,table(vehicleType),] # uhh? why would this even work?!?

vehicleType
andere bus cabrio coupe kleinwagen
37899 3362 30220 22914 19026 80098
kombi limousine suv
67626 95963 14716
auto[, mean(price), by=vehicleType] # average price by car group

vehicleType V1
1: 20124.688
2: coupe 25951.506
3: suv 13252.392
4: kleinwagen 5691.167
5: limousine 11111.107
6: cabrio 15072.998
7: bus 10300.686
8: kombi 7739.518
9: andere 676327.100

The .N operator is very useful if you need to count the length of the result. Notice where I use it:
auto[.N,,] # will exctract the *last* row

dateCrawled name seller
1: 2016-03-07 19:39:19 BMW_M135i_vollausgestattet_NP_52.720____Euro privat
offerType price abtest vehicleType yearOfRegistration gearbox powerPS
1: Angebot 28990 control limousine 2013 manuell 320
model kilometer monthOfRegistration fuelType brand notRepairedDamage
1: m_reihe 50000 8 benzin bmw nein
dateCreated nrOfPictures postalCode lastSeen
1: 2016-03-07 00:00:00 0 73326 2016-03-22 03:17:10

39

CHAPTER 4. DATA.TABLE

auto[,.N] # will count rows

[1] 371824
auto[,.N, vehicleType] # will count rows by type

vehicleType N
1: 37899
2: coupe 19026
3: suv 14716
4: kleinwagen 80098
5: limousine 95963
6: cabrio 22914
7: bus 30220
8: kombi 67626
9: andere 3362

You may concatenate results into a vector:
auto[,c(mean(price), mean(powerPS)),]

[1] 17286.2996 115.5414

This c() syntax no longer behaves well if splitting:
auto[,c(mean(price), mean(powerPS)), by=vehicleType]

vehicleType V1
1: 20124.68801
2: 71.23249
3: coupe 25951.50589
4: coupe 172.97614
5: suv 13252.39182
6: suv 166.01903
7: kleinwagen 5691.16738
8: kleinwagen 68.75733
9: limousine 11111.10661
10: limousine 132.26936
11: cabrio 15072.99782
12: cabrio 145.17684
13: bus 10300.68561
14: bus 113.58137
15: kombi 7739.51760
16: kombi 136.40654
17: andere 676327.09964
18: andere 102.11154

Use a list() instead of c(), within data.table commands:
auto[,list(mean(price), mean(powerPS)), by=vehicleType]

vehicleType V1 V2
1: 20124.688 71.23249
2: coupe 25951.506 172.97614
3: suv 13252.392 166.01903
4: kleinwagen 5691.167 68.75733
5: limousine 11111.107 132.26936
6: cabrio 15072.998 145.17684
7: bus 10300.686 113.58137
8: kombi 7739.518 136.40654
9: andere 676327.100 102.11154

40

CHAPTER 4. DATA.TABLE

You can add names to your new variables:
auto[,list(Price=mean(price), Power=mean(powerPS)), by=vehicleType]

vehicleType Price Power
1: 20124.688 71.23249
2: coupe 25951.506 172.97614
3: suv 13252.392 166.01903
4: kleinwagen 5691.167 68.75733
5: limousine 11111.107 132.26936
6: cabrio 15072.998 145.17684
7: bus 10300.686 113.58137
8: kombi 7739.518 136.40654
9: andere 676327.100 102.11154

You can use .() to replace the longer list() command:
auto[,.(Price=mean(price), Power=mean(powerPS)), by=vehicleType]

vehicleType Price Power
1: 20124.688 71.23249
2: coupe 25951.506 172.97614
3: suv 13252.392 166.01903
4: kleinwagen 5691.167 68.75733
5: limousine 11111.107 132.26936
6: cabrio 15072.998 145.17684
7: bus 10300.686 113.58137
8: kombi 7739.518 136.40654
9: andere 676327.100 102.11154

And split by multiple variables:
auto[,.(Price=mean(price), Power=mean(powerPS)), by=.(vehicleType,fuelType)] %>% head

vehicleType fuelType Price Power
1: benzin 11820.443 70.14477
2: coupe diesel 51170.248 179.48704
3: suv diesel 15549.369 168.16115
4: kleinwagen benzin 5786.514 68.74309
5: kleinwagen diesel 4295.550 76.83666
6: limousine benzin 6974.360 127.87025

Compute with variables created on the fly:
auto[,sum(price<1e4),] # Count prices lower than 10,000

[1] 310497
auto[,mean(price<1e4),] # Proportion of prices lower than 10,000

[1] 0.8350644
auto[,.(Power=mean(powerPS)), by=.(PriceRange=price>1e4)]

PriceRange Power
1: FALSE 101.8838
2: TRUE 185.9029

Things to note:

• The term price<1e4 creates on the fly a binary vector of TRUE=1 / FALSE=0 for prices less than 10k and
then sums/means this vector, hence sum is actually a count, and mean is proportion=count/total

• Summing all prices lower than 10k is done with the command auto[price<1e4,sum(price),]

You may sort along one or more columns

41

CHAPTER 4. DATA.TABLE

auto[order(-price), price,] %>% head # Order along price. Descending

[1] 2147483647 99999999 99999999 99999999 99999999 99999999
auto[order(price, -lastSeen), price,] %>% head# Order along price and last seen . Ascending and descending.

[1] 0 0 0 0 0 0

You may apply a function to ALL columns using a Subset of the Data using .SD
count.uniques <- function(x) length(unique(x))
auto[,lapply(.SD, count.uniques), vehicleType]

vehicleType dateCrawled name seller offerType price abtest
1: 36714 32891 1 2 1378 2
2: coupe 18745 13182 1 2 1994 2
3: suv 14549 9707 1 1 1667 2
4: kleinwagen 75591 49302 2 2 1927 2
5: limousine 89352 58581 2 1 2986 2
6: cabrio 22497 13411 1 1 2014 2
7: bus 29559 19651 1 2 1784 2
8: kombi 64415 41976 2 1 2529 2
9: andere 3352 3185 1 1 562 2
yearOfRegistration gearbox powerPS model kilometer monthOfRegistration
1: 101 3 374 244 13 13
2: 75 3 414 117 13 13
3: 73 3 342 122 13 13
4: 75 3 317 163 13 13
5: 83 3 506 210 13 13
6: 88 3 363 95 13 13
7: 65 3 251 106 13 13
8: 64 3 393 177 13 13
9: 81 3 230 162 13 13
fuelType brand notRepairedDamage dateCreated nrOfPictures postalCode
1: 8 40 3 65 1 6304
2: 8 35 3 51 1 5159
3: 8 37 3 61 1 4932
4: 8 38 3 68 1 7343
5: 8 39 3 82 1 7513
6: 7 38 3 70 1 5524
7: 8 33 3 63 1 6112
8: 8 38 3 75 1 7337
9: 8 38 3 41 1 2220
lastSeen
1: 32813
2: 16568
3: 13367
4: 59354
5: 65813
6: 19125
7: 26094
8: 50668
9: 3294

Things to note:

• .SD is the data subset after splitting along the by argument.
• Recall that lapply applies the same function to all elements of a list. In this example, to all columns of .SD.

If you want to apply a function only to a subset of columns, use the .SDcols argument

42

CHAPTER 4. DATA.TABLE 4.1. MAKE YOUR OWN VARIABLES

auto[,lapply(.SD, count.uniques), by=vehicleType, .SDcols=price:gearbox]

vehicleType price abtest vehicleType yearOfRegistration gearbox
1: 1378 2 1 101 3
2: coupe 1994 2 1 75 3
3: suv 1667 2 1 73 3
4: kleinwagen 1927 2 1 75 3
5: limousine 2986 2 1 83 3
6: cabrio 2014 2 1 88 3
7: bus 1784 2 1 65 3
8: kombi 2529 2 1 64 3
9: andere 562 2 1 81 3

4.1 Make your own variables
It is very easy to compute new variables
auto[,log(price/powerPS),] %>% head # This makes no sense

[1] Inf 4.567632 4.096387 2.995732 3.954583 1.852000

And if you want to store the result in a new variable, use the := operator
auto[,newVar:=log(price/powerPS),]

Or create multiple variables at once. The syntax c("A","B"):=.(expression1,expression2)is read “save the list
of results from expression1 and expression2 using the vector of names A, and B”.
auto[,c('newVar','newVar2'):=.(log(price/powerPS),price^2/powerPS),]

4.2 Join
data.table can be used for joining. A join is the operation of aligning two (or more) data frames/tables along some
index. The index can be a single variable, or a combination thereof.

Here is a simple example of aligning age and gender from two different data tables:
DT1 <- data.table(Names=c("Alice","Bob"), Age=c(29,31))
DT2 <- data.table(Names=c("Alice","Bob","Carl"), Gender=c("F","M","M"))
setkey(DT1, Names)
setkey(DT2, Names)
DT1[DT2,,]

Names Age Gender
1: Alice 29 F
2: Bob 31 M
3: Carl NA M
DT2[DT1,,]

Names Gender Age
1: Alice F 29
2: Bob M 31

Things to note:

• A join with data.tables is performed by indexing one data.table with another. Which is the outer and which
is the inner will affect the result.

• The indexing variable needs to be set using the setkey function.

There are several types of joins:

43

4.3. RESHAPING DATA CHAPTER 4. DATA.TABLE

• Inner join: Returns the rows along the intersection of keys, i.e., rows that appear in all data sets.
• Outer join: Returns the rows along the union of keys, i.e., rows that appear in any of the data sets.
• Left join: Returns the rows along the index of the “left” data set.
• Right join: Returns the rows along the index of the “right” data set.

Assuming DT1 is the “left” data set, we see that DT1[DT2,,] is a right join, and DT2[DT1,,] is a left join. For an inner
join use the nomath=0 argument:
DT1[DT2,,,nomatch=0]

Names Age Gender
1: Alice 29 F
2: Bob 31 M
DT2[DT1,,,nomatch=0]

Names Gender Age
1: Alice F 29
2: Bob M 31

4.3 Reshaping data
Data sets (i.e. frames or tables) may arrive in a “wide” form or a “long” form. The difference is best illustrated with
an example. The ChickWeight data encodes the weight of various chicks. It is “long” in that a variable encodes the
time of measurement, making the data, well, simply long:
ChickWeight %>% head

Grouped Data: weight ~ Time | Chick
weight Time Chick Diet
1 42 0 1 1
2 51 2 1 1
3 59 4 1 1
4 64 6 1 1
5 76 8 1 1
6 93 10 1 1

The mtcars data encodes 11 characteristics of 32 types of automobiles. It is “wide” since the various characteristics
are encoded in different variables, making the data, well, simply wide.
mtcars %>% head

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Most of R’s functions, with exceptions, will prefer data in the long format. There are thus various facilities to convert
from one format to another. We will focus on the melt and dcast functions to convert from one format to another.

4.3.1 Wide to long
melt will convert from wide to long.
dimnames(mtcars)

[[1]]
[1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710"
[4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant"
[7] "Duster 360" "Merc 240D" "Merc 230"

44

CHAPTER 4. DATA.TABLE 4.3. RESHAPING DATA

[10] "Merc 280" "Merc 280C" "Merc 450SE"
[13] "Merc 450SL" "Merc 450SLC" "Cadillac Fleetwood"
[16] "Lincoln Continental" "Chrysler Imperial" "Fiat 128"
[19] "Honda Civic" "Toyota Corolla" "Toyota Corona"
[22] "Dodge Challenger" "AMC Javelin" "Camaro Z28"
[25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2"
[28] "Lotus Europa" "Ford Pantera L" "Ferrari Dino"
[31] "Maserati Bora" "Volvo 142E"
##
[[2]]
[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
[11] "carb"
mtcars$type <- rownames(mtcars)
melt(mtcars, id.vars=c("type")) %>% head

type variable value
1 Mazda RX4 mpg 21.0
2 Mazda RX4 Wag mpg 21.0
3 Datsun 710 mpg 22.8
4 Hornet 4 Drive mpg 21.4
5 Hornet Sportabout mpg 18.7
6 Valiant mpg 18.1

Things to note:

• The car type was originally encoded in the rows’ names, and not as a variable. We thus created an explicit
variable with the cars’ type using the rownames function.

• The id.vars of the melt function names the variables that will be used as identifiers. All other variables are
assumed to be measurements. These can have been specified using their index instead of their name.

• If not all variables are measurements, we could have names measurement variables explicitly using the
measure.vars argument of the melt function. These can have been specified using their index instead of their
name.

• By default, the molten columns are automatically named variable and value.

We can replace the automatic namings using variable.name and value.name:
melt(mtcars, id.vars=c("type"), variable.name="Charachteristic", value.name="Measurement") %>% head

type Charachteristic Measurement
1 Mazda RX4 mpg 21.0
2 Mazda RX4 Wag mpg 21.0
3 Datsun 710 mpg 22.8
4 Hornet 4 Drive mpg 21.4
5 Hornet Sportabout mpg 18.7
6 Valiant mpg 18.1

4.3.2 Long to wide
dcast will convert from long to wide:
dcast(ChickWeight, Chick~Time, value.var="weight")

Chick 0 2 4 6 8 10 12 14 16 18 20 21
1 18 39 35 NA NA NA NA NA NA NA NA NA NA
2 16 41 45 49 51 57 51 54 NA NA NA NA NA
3 15 41 49 56 64 68 68 67 68 NA NA NA NA
4 13 41 48 53 60 65 67 71 70 71 81 91 96
5 9 42 51 59 68 85 96 90 92 93 100 100 98
6 20 41 47 54 58 65 73 77 89 98 107 115 117
7 10 41 44 52 63 74 81 89 96 101 112 120 124

45

4.4. BIBLIOGRAPHIC NOTES CHAPTER 4. DATA.TABLE

8 8 42 50 61 71 84 93 110 116 126 134 125 NA
9 17 42 51 61 72 83 89 98 103 113 123 133 142
10 19 43 48 55 62 65 71 82 88 106 120 144 157
11 4 42 49 56 67 74 87 102 108 136 154 160 157
12 6 41 49 59 74 97 124 141 148 155 160 160 157
13 11 43 51 63 84 112 139 168 177 182 184 181 175
14 3 43 39 55 67 84 99 115 138 163 187 198 202
15 1 42 51 59 64 76 93 106 125 149 171 199 205
16 12 41 49 56 62 72 88 119 135 162 185 195 205
17 2 40 49 58 72 84 103 122 138 162 187 209 215
18 5 41 42 48 60 79 106 141 164 197 199 220 223
19 14 41 49 62 79 101 128 164 192 227 248 259 266
20 7 41 49 57 71 89 112 146 174 218 250 288 305
21 24 42 52 58 74 66 68 70 71 72 72 76 74
22 30 42 48 59 72 85 98 115 122 143 151 157 150
23 22 41 55 64 77 90 95 108 111 131 148 164 167
24 23 43 52 61 73 90 103 127 135 145 163 170 175
25 27 39 46 58 73 87 100 115 123 144 163 185 192
26 28 39 46 58 73 92 114 145 156 184 207 212 233
27 26 42 48 57 74 93 114 136 147 169 205 236 251
28 25 40 49 62 78 102 124 146 164 197 231 259 265
29 29 39 48 59 74 87 106 134 150 187 230 279 309
30 21 40 50 62 86 125 163 217 240 275 307 318 331
31 33 39 50 63 77 96 111 137 144 151 146 156 147
32 37 41 48 56 68 80 83 103 112 135 157 169 178
33 36 39 48 61 76 98 116 145 166 198 227 225 220
34 31 42 53 62 73 85 102 123 138 170 204 235 256
35 39 42 50 61 78 89 109 130 146 170 214 250 272
36 38 41 49 61 74 98 109 128 154 192 232 280 290
37 32 41 49 65 82 107 129 159 179 221 263 291 305
38 40 41 55 66 79 101 120 154 182 215 262 295 321
39 34 41 49 63 85 107 134 164 186 235 294 327 341
40 35 41 53 64 87 123 158 201 238 287 332 361 373
41 44 42 51 65 86 103 118 127 138 145 146 NA NA
42 45 41 50 61 78 98 117 135 141 147 174 197 196
43 43 42 55 69 96 131 157 184 188 197 198 199 200
44 41 42 51 66 85 103 124 155 153 175 184 199 204
45 47 41 53 66 79 100 123 148 157 168 185 210 205
46 49 40 53 64 85 108 128 152 166 184 203 233 237
47 46 40 52 62 82 101 120 144 156 173 210 231 238
48 50 41 54 67 84 105 122 155 175 205 234 264 264
49 42 42 49 63 84 103 126 160 174 204 234 269 281
50 48 39 50 62 80 104 125 154 170 222 261 303 322

Things to note:

• dcast uses a formula interface (~) to specify the row identifier and the variables. The LHS is the row identifier,
and the RHS for the variables to be created.

• The measurement of each LHS at each RHS, is specified using the value.var argument.

4.4 Bibliographic Notes
data.table has excellent online documentation. See here6. See here7 for joining. See here8 for more on reshaping.
See here9 for a comparison of the data.frame way, versus the data.table way. For some advanced tips and tricks see

6https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html
7https://rstudio-pubs-static.s3.amazonaws.com/52230_5ae0d25125b544caab32f75f0360e775.html
8https://cran.r-project.org/web/packages/data.table/vignettes/datatable-reshape.html
9https://www.r-bloggers.com/intro-to-the-data-table-package/

46

https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html
https://rstudio-pubs-static.s3.amazonaws.com/52230_5ae0d25125b544caab32f75f0360e775.html
https://cran.r-project.org/web/packages/data.table/vignettes/datatable-reshape.html
https://www.r-bloggers.com/intro-to-the-data-table-package/

CHAPTER 4. DATA.TABLE 4.5. PRACTICE YOURSELF

Andrew Brooks’ blog10.

4.5 Practice Yourself
1. Create a matrix of ones with 1e5 rows and 1e2 columns. Create a data.table using this matrix.

1. Replace the first column of each, with the sequence 1, 2, 3, ….
2. Create a column which is the sum of all columns, and a 𝒩(0, 1) random variable.

2. Use the cars dataset used in this chapter from kaggle Kaggle11.
1. Import the data using the function fread. What is the class of your object?
2. Use system.time() to measure the time to sort along “seller”. Do the same after converting the data to

data.frame. Are data tables faster?

Also, see DataCamp’s Data Manipulation in R with data.table12, by Matt Dowle, the author of data.table for more
self practice.

10http://brooksandrew.github.io/simpleblog/articles/advanced-data-table/
11https://www.kaggle.com/orgesleka/used-cars-database
12https://www.datacamp.com/courses/data-manipulation-in-r-with-datatable

47

http://brooksandrew.github.io/simpleblog/articles/advanced-data-table/
https://www.kaggle.com/orgesleka/used-cars-database
https://www.datacamp.com/courses/data-manipulation-in-r-with-datatable

4.5. PRACTICE YOURSELF CHAPTER 4. DATA.TABLE

48

Chapter 5

Exploratory Data Analysis

Exploratory Data Analysis (EDA) is a term coined by John W. Tukey1 in his seminal book (Tukey, 1977). It is also
(arguably) known as Visual Analytics, or Descriptive Statistics. It is the practice of inspecting, and exploring your
data, before stating hypotheses, fitting predictors, and other more ambitious inferential goals. It typically includes
the computation of simple summary statistics which capture some property of interest in the data, and visualization.
EDA can be thought of as an assumption free, purely algorithmic practice.

In this text we present EDA techniques along the following lines:

• How we explore: with summary-statistics, or visually?
• How many variables analyzed simultaneously: univariate, bivariate, or multivariate?
• What type of variable: categorical or continuous?

5.1 Summary Statistics
5.1.1 Categorical Data
Categorical variables do not admit any mathematical operations on them. We cannot sum them, or even sort them.
We can only count them. As such, summaries of categorical variables will always start with the counting of the
frequency of each category.

5.1.1.1 Summary of Univariate Categorical Data

Make some data
gender <- c(rep('Boy', 10), rep('Girl', 12))
drink <- c(rep('Coke', 5), rep('Sprite', 3), rep('Coffee', 6), rep('Tea', 7), rep('Water', 1))
age <- sample(c('Young', 'Old'), size = length(gender), replace = TRUE)
Count frequencies
table(gender)

gender
Boy Girl
10 12
table(drink)

drink
Coffee Coke Sprite Tea Water
6 5 3 7 1
table(age)

age
1https://en.wikipedia.org/wiki/John_Tukey

49

https://en.wikipedia.org/wiki/John_Tukey

5.1. SUMMARY STATISTICS CHAPTER 5. EXPLORATORY DATA ANALYSIS

Old Young
12 10

If instead of the level counts you want the proportions, you can use prop.table
prop.table(table(gender))

gender
Boy Girl
0.4545455 0.5454545

5.1.1.2 Summary of Bivariate Categorical Data

library(magrittr)
cbind(gender, drink) %>% head # bind vectors into matrix and inspect (`c` for column)

gender drink
[1,] "Boy" "Coke"
[2,] "Boy" "Coke"
[3,] "Boy" "Coke"
[4,] "Boy" "Coke"
[5,] "Boy" "Coke"
[6,] "Boy" "Sprite"
table1 <- table(gender, drink) # count frequencies of bivariate combinations
table1

drink
gender Coffee Coke Sprite Tea Water
Boy 2 5 3 0 0
Girl 4 0 0 7 1

5.1.1.3 Summary of Multivariate Categorical Data

You may be wondering how does R handle tables with more than two dimensions. It is indeed not trivial to report this
in a human-readable way. R offers several solutions: table is easier to compute with, and ftable is human readable.
table2.1 <- table(gender, drink, age) # A machine readable table.
table2.1

, , age = Old
##
drink
gender Coffee Coke Sprite Tea Water
Boy 2 1 1 0 0
Girl 3 0 0 5 0
##
, , age = Young
##
drink
gender Coffee Coke Sprite Tea Water
Boy 0 4 2 0 0
Girl 1 0 0 2 1
table.2.2 <- ftable(gender, drink, age) # A human readable table (`f` for Flat).
table.2.2

age Old Young
gender drink
Boy Coffee 2 0
Coke 1 4
Sprite 1 2

50

CHAPTER 5. EXPLORATORY DATA ANALYSIS 5.1. SUMMARY STATISTICS

Tea 0 0
Water 0 0
Girl Coffee 3 1
Coke 0 0
Sprite 0 0
Tea 5 2
Water 0 1

If you want proportions instead of counts, you need to specify the denominator, i.e., the margins. Think: what is the
margin in each of the following outputs?
prop.table(table1, margin = 1) # every *row* sums to to 1

drink
gender Coffee Coke Sprite Tea Water
Boy 0.20000000 0.50000000 0.30000000 0.00000000 0.00000000
Girl 0.33333333 0.00000000 0.00000000 0.58333333 0.08333333
prop.table(table1, margin = 2) # every *column* sums to 1

drink
gender Coffee Coke Sprite Tea Water
Boy 0.3333333 1.0000000 1.0000000 0.0000000 0.0000000
Girl 0.6666667 0.0000000 0.0000000 1.0000000 1.0000000

5.1.2 Continous Data
Continuous variables admit many more operations than categorical. We can compute sums, means, quantiles, and
more.

5.1.2.1 Summary of Univariate Continuous Data

We distinguish between several types of summaries, each capturing a different property of the data.

5.1.2.2 Summary of Location

Capture the “location” of the data. These include:

Definition 5.1 (Average). The mean, or average, of a sample 𝑥 ∶= (𝑥1, … , 𝑥𝑛), denoted ̄𝑥 is defined as

̄𝑥 ∶= 𝑛−1 ∑ 𝑥𝑖.

The sample mean is non robust. A single large observation may inflate the mean indefinitely. For this reason, we
define several other summaries of location, which are more robust, i.e., less affected by “contaminations” of the data.

We start by defining the sample quantiles, themselves not a summary of location.

Definition 5.2 (Quantiles). The 𝛼 quantile of a sample 𝑥, denoted 𝑥𝛼, is (non uniquely) defined as a value above
100𝛼% of the sample, and below 100(1 − 𝛼)%.

We emphasize that sample quantiles are non-uniquely defined. See ?quantile for the 9(!) different definitions that R
provides.

Using the sample quantiles, we can now define another summary of location, the median.

Definition 5.3 (Median). The median of a sample 𝑥, denoted 𝑥0.5 is the 𝛼 = 0.5 quantile of the sample.

A whole family of summaries of locations is the alpha trimmed mean.

Definition 5.4 (Alpha Trimmed Mean). The 𝛼 trimmed mean of a sample 𝑥, denoted ̄𝑥𝛼 is the average of the sample
after removing the 𝛼 proportion of largest and 𝛼 proportion of smallest observations.

51

5.1. SUMMARY STATISTICS CHAPTER 5. EXPLORATORY DATA ANALYSIS

The simple mean and median are instances of the alpha trimmed mean: ̄𝑥0 and ̄𝑥0.5 respectively.

Here are the R implementations:
x <- rexp(100) # generate some (assymetric) random data
mean(x) # simple mean

[1] 1.017118
median(x) # median

[1] 0.5805804
mean(x, trim = 0.2) # alpha trimmed mean with alpha=0.2

[1] 0.7711528

5.1.2.3 Summary of Scale

The scale of the data, sometimes known as spread, can be thought of its variability.

Definition 5.5 (Standard Deviation). The standard deviation of a sample 𝑥, denoted 𝑆(𝑥), is defined as

𝑆(𝑥) ∶= √(𝑛 − 1)−1 ∑(𝑥𝑖 − ̄𝑥)2.

For reasons of robustness, we define other, more robust, measures of scale.

Definition 5.6 (MAD). The Median Absolute Deviation from the median, denoted as 𝑀𝐴𝐷(𝑥), is defined as

𝑀𝐴𝐷(𝑥) ∶= 𝑐 |𝑥 − 𝑥0.5|0.5.

where 𝑐 is some constant, typically set to 𝑐 = 1.4826 so that MAD and 𝑆(𝑥) have the same large sample limit.

Definition 5.7 (IQR). The Inter Quartile Range of a sample 𝑥, denoted as 𝐼𝑄𝑅(𝑥), is defined as

𝐼𝑄𝑅(𝑥) ∶= 𝑥0.75 − 𝑥0.25.

Here are the R implementations
sd(x) # standard deviation

[1] 0.9981981
mad(x) # MAD

[1] 0.6835045
IQR(x) # IQR

[1] 1.337731

5.1.2.4 Summary of Asymmetry

Summaries of asymmetry, also known as skewness, quantify the departure of the 𝑥 from a symmetric sample.

Definition 5.8 (Yule). The Yule measure of assymetry, denoted 𝑌 𝑢𝑙𝑒(𝑥) is defined as

𝑌 𝑢𝑙𝑒(𝑥) ∶= 1/2 (𝑥0.75 + 𝑥0.25) − 𝑥0.5
1/2 𝐼𝑄𝑅(𝑥) .

Here is an R implementation

52

CHAPTER 5. EXPLORATORY DATA ANALYSIS 5.1. SUMMARY STATISTICS

yule <- function(x){
numerator <- 0.5 * (quantile(x,0.75) + quantile(x,0.25))-median(x)
denominator <- 0.5* IQR(x)
c(numerator/denominator, use.names=FALSE)

}
yule(x)

[1] 0.5755205

Things to note:

• A perfectly symmetric vector will return 0 because the median will be exactly on the midway.
• It is bounded between -1 and 1 because of the denominator

5.1.2.5 Summary of Bivariate Continuous Data

When dealing with bivariate, or multivariate data, we can obviously compute univariate summaries for each variable
separately. This is not the topic of this section, in which we want to summarize the association between the variables,
and not within them.

Definition 5.9 (Covariance). The covariance between two samples, 𝑥 and 𝑦, of same length 𝑛, is defined as

𝐶𝑜𝑣(𝑥, 𝑦) ∶= (𝑛 − 1)−1 ∑(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

We emphasize this is not the covariance you learned about in probability classes, since it is not the covariance between
two random variables but rather, between two samples. For this reasons, some authors call it the empirical covariance,
or sample covariance.

Definition 5.10 (Pearson’s Correlation Coefficient). Peasrson’s correlation coefficient, a.k.a. Pearson’s moment
product correlation, or simply, the correlation, denoted r(x,y), is defined as

𝑟(𝑥, 𝑦) ∶= 𝐶𝑜𝑣(𝑥, 𝑦)
𝑆(𝑥)𝑆(𝑦) .

If you find this definition enigmatic, just think of the correlation as the covariance between 𝑥 and 𝑦 after transforming
each to the unitless scale of z-scores.

Definition 5.11 (Z-Score). The z-scores of a sample 𝑥 are defined as the mean-centered, scale normalized observations:

𝑧𝑖(𝑥) ∶= 𝑥𝑖 − ̄𝑥
𝑆(𝑥) .

We thus have that 𝑟(𝑥, 𝑦) = 𝐶𝑜𝑣(𝑧(𝑥), 𝑧(𝑦)).
Here are the R implementations
y <- rexp(100) # generate another vector of some random data
cov(x,y) # covariance between x and y

[1] -0.03381266
cor(x,y) # correlation between x and y (default is pearson)

[1] -0.03641364
scale(x) %>% head # z-score of x

[,1]
[1,] 1.72293613
[2,] 0.83367533
[3,] 0.27703737
[4,] -1.00110536
[5,] 0.07671776
[6,] -0.66044228

53

5.2. VISUALIZATION CHAPTER 5. EXPLORATORY DATA ANALYSIS

5.1.2.6 Summary of Multivariate Continuous Data

The covariance is a simple summary of association between two variables, but it certainly may not capture the whole
“story” when dealing with more than two variables. The most common summary of multivariate relation, is the
covariance matrix, but we warn that only the simplest multivariate relations are fully summarized by this matrix.

Definition 5.12 (Sample Covariance Matrix). Given 𝑛 observations on 𝑝 variables, denote 𝑥𝑖,𝑗 the 𝑖’th observation
of the 𝑗’th variable. The sample covariance matrix, denoted Σ̂ is defined as

Σ̂𝑘,𝑙 = (𝑛 − 1)−1 ∑
𝑖

[(𝑥𝑖,𝑘 − ̄𝑥𝑘)(𝑥𝑖,𝑙 − ̄𝑥𝑙)],

where ̄𝑥𝑘 ∶= 𝑛−1 ∑𝑖 𝑥𝑖,𝑘. Put differently, the 𝑘, 𝑙’th entry in Σ̂ is the sample covariance between variables 𝑘 and 𝑙.

Remark. Σ̂ is clearly non robust. How would you define a robust covariance matrix?

5.2 Visualization
Summarizing the information in a variable to a single number clearly conceals much of the story in the sample. This
is like inspecting a person using a caricature, instead of a picture. Visualizing the data, when possible, is more
informative.

5.2.1 Categorical Data
Recalling that with categorical variables we can only count the frequency of each level, the plotting of such variables
are typically variations on the bar plot.

5.2.1.1 Visualizing Univariate Categorical Data

barplot(table(age))

Old Young

0
2

4
6

8
10

12

5.2.1.2 Visualizing Bivariate Categorical Data

There are several generalizations of the barplot, aimed to deal with the visualization of bivariate categorical data.
They are sometimes known as the clustered bar plot and the stacked bar plot. In this text, we advocate the use of the
mosaic plot which is also the default in R.
plot(table1, main='Bivariate mosaic plot')

54

CHAPTER 5. EXPLORATORY DATA ANALYSIS 5.2. VISUALIZATION

Bivariate mosaic plot

gender

dr
in

k

Boy Girl
C

of
fe

e
C

ok
e

S
pr

ite
Te

a
W

at
er

Things to note:

• The proportion of each category is encoded in the width of the bars (more girls than boys here)
• Zero observations are marked as a line.

5.2.1.3 Visualizing Multivariate Categorical Data

The mosaic plot is not easy to generalize to more than two variables, but it is still possible (at the cost of interpretabil-
ity).
plot(table2.1, main='Trivaraite mosaic plot')

Trivaraite mosaic plot

gender

dr
in

k

Boy Girl

C
of

fe
e

C
ok

e
S

pr
ite

Te
a

W
at

er

Old Young Old Young

When one of the variables is a (discrete) time variable, then the plot has a notion dynamics in time. For this see the
Alluvial plot 5.3.1.

If the variables represent a hierarchy, consider a Sunburst Plot:
library(sunburstR)
read in sample visit-sequences.csv data provided in source
https://gist.github.com/kerryrodden/7090426#file-visit-sequences-csv
sequences <- read.csv(
system.file("examples/visit-sequences.csv",package="sunburstR")
,header=F
,stringsAsFactors = FALSE

)
sunburst(sequences) # In the HTML version of the book this plot is interactive.

55

5.2. VISUALIZATION CHAPTER 5. EXPLORATORY DATA ANALYSIS

Legend

5.2.2 Continuous Data

5.2.2.1 Visualizing Univariate Continuous Data

Unlike categorical variables, there are endlessly many ways to visualize continuous variables. The simplest way is to
look at the raw data via the stripchart.
sample1 <- rexp(10)
stripchart(sample1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Clearly, if there are many observations, the stripchart will be a useless line of black dots. We thus bin them together,
and look at the frequency of each bin; this is the histogram. R’s histogram function has very good defaults to choose
the number of bins. Here is a histogram showing the counts of each bin.
sample1 <- rexp(100)
hist(sample1, freq=T, main='Counts')

Counts

sample1

F
re

qu
en

cy

0 1 2 3 4 5

0
10

20
30

40

The bin counts can be replaced with the proportion of each bin using the freq argument.
hist(sample1, freq=F, main='Proportion')

56

CHAPTER 5. EXPLORATORY DATA ANALYSIS 5.2. VISUALIZATION

Proportion

sample1

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

Things to note:

• The bins’ proportion summary is larger than 1 because it considers each bin’s width, which in this case has a
constant width of 0.5, hence the total proportion sum is 1/0.5=2.

The bins of a histogram are non overlapping. We can adopt a sliding window approach, instead of binning. This is
the density plot which is produced with the density function, and added to an existing plot with the lines function.
The rug function adds the original data points as ticks on the axes, and is strongly recommended to detect artifacts
introduced by the binning of the histogram, or the smoothing of the density plot.
hist(sample1, freq=F, main='Frequencies')
lines(density(sample1))
rug(sample1)

Frequencies

sample1

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

Remark. Why would it make no sense to make a table, or a barplot, of continuous data?

One particularly useful visualization, due to John W. Tukey, is the boxplot. The boxplot is designed to capture the
main phenomena in the data, and simultaneously point to outlines.
boxplot(sample1)

57

5.2. VISUALIZATION CHAPTER 5. EXPLORATORY DATA ANALYSIS

0
1

2
3

4
5

Another way to deal with a massive amount of data points, is to emphasize important points, and conceal non-
important. This is the purpose of circle-packing (example from r-graph gallery2):

5.2.2.2 Visualizing Bivariate Continuous Data

The bivariate counterpart of the stipchart is the celebrated scatter plot.
n <- 20
x1 <- rexp(n)
x2 <- 2* x1 + 4 + rexp(n)
plot(x2~x1)

0 1 2 3

6
8

10
12

x1

x2

A scatter-plot may be augmented with marginal univariate visualization. See, for instance, the rug function to add
the raw data on the margins:
plot(x2~x1)
rug(x1,side = 1)
rug(x2,side = 2)

2https://www.r-graph-gallery.com/308-interactive-circle-packing/

58

https://www.r-graph-gallery.com/308-interactive-circle-packing/

CHAPTER 5. EXPLORATORY DATA ANALYSIS 5.2. VISUALIZATION

0 1 2 3

6
8

10
12

x1

x2

A fancier version may use a histogram on the margins:

−2

0

2

4

−2.5 0.0 2.5

x

y

Like the univariate stripchart, the scatter plot will be an uninformative mess in the presence of a lot of data. A nice
bivariate counterpart of the univariate histogram is the hexbin plot, which tessellates the plane with hexagons, and
reports their frequencies.
library(hexbin) # load required library
n <- 2e5
x1 <- rexp(n)
x2 <- 2* x1 + 4 + rnorm(n)
plot(hexbin(x = x1, y = x2))

0 2 4 6 8 10 12

0

5

10

15

20

25

30

x1

x2

1
1508
3015
4523
6030
7537
9044

10551
12058
13566
15073
16580
18087
19594
21102
22609
24116

Counts

59

5.2. VISUALIZATION CHAPTER 5. EXPLORATORY DATA ANALYSIS

5.2.2.3 Visualizing Multivariate Continuous Data

Visualizing multivariate data is a tremendous challenge given that we cannot grasp 4 dimensional spaces, nor can the
computer screen present more than 2 dimensional spaces. We thus have several options: (i) To project the data to
2D. This is discussed in the Dimensionality Reduction Section 11.1. (ii) To visualize not the raw data, but rather its
summaries, like the covariance matrix.

Our own Multinav3 package adopts an interactive approach. For each (multivariate) observation a simple univariate
summary may be computed and visualized. These summaries may be compared, and the original (multivariate)
observation inspected upon demand. Contact Efrat4 for more details.

An alternative approach starts with the covariance matrix, Σ̂, that can be visualized as an image. Note the use of
the :: operator (called Double Colon Operator, for help: ?'::'), which is used to call a function from some package,
without loading the whole package. We will use the :: operator when we want to emphasize the package of origin of
a function.
covariance <- cov(longley) # The covariance of the longley dataset
correlations <- cor(longley) # The correlations of the longley dataset
lattice::levelplot(correlations)

3https://github.com/EfratVil/MultiNav
4http://efratvil.github.io/home/index.html

60

https://github.com/EfratVil/MultiNav
http://efratvil.github.io/home/index.html

CHAPTER 5. EXPLORATORY DATA ANALYSIS 5.2. VISUALIZATION

row

co
lu

m
n

GNP.deflator

GNP

Unemployed

Armed.Forces

Population

Year

Employed

GNP.deflatorGNPUnemployedArmed.ForcesPopulationYearEmployed

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

If we believe the covariance has some structure, we can do better than viewing the raw correlations. In temporal, and
spatial data, we believe correlations decay as some function of distances. We can thus view correlations as a function
of the distance between observations. This is known as a variogram. Note that for a variogram to be informative, it
is implied that correlations are merely a function of distances (and not locations themselves). This is formally known
as stationary and isotropic correlations.

Figure 5.1: Variogram: plotting correlation as a function of spatial distance. Courtesy of Ron Sarafian.

61

5.3. MIXED TYPE DATA CHAPTER 5. EXPLORATORY DATA ANALYSIS

5.2.2.4 Parallel Coordinate Plots

In a parallel coordinate plot, we plot a multivariate observation as a function of its coordinates. In the following
example, we visualize the celebrated Iris dataset5. In this dataset, for each of 50 iris flowers, Edgar Anderson measured
4 characteristics.
ir <- rbind(iris3[,,1], iris3[,,2], iris3[,,3])
MASS::parcoord(log(ir)[, c(3, 4, 2, 1)], col = 1 + (0:149)%/%50)

Petal L. Petal W. Sepal W. Sepal L.

5.3 Mixed Type Data

Most real data sets will be of mixed type: both categorical and continuous. One approach to view such data, is to
visualize the continuous variables separately, for each level of the categorical variables. There are, however, interesting
dedicated visualization for such data.

5.3.1 Alluvial Diagram

An Alluvial plot is a type of Parallel Coordinate Plot for multivariate categorical data. It is particularly interesting
when the 𝑥 axis is a discretized time variable, and it is used to visualize flow.

The following example, from the ggalluvial package Vignette by Jason Cory Brunson6, demonstrates the flow of
students between different majors, as semesters evolve.
library(ggalluvial)
data(majors)
majors$curriculum <- as.factor(majors$curriculum)
ggplot(majors,

aes(x = semester, stratum = curriculum, alluvium = student,
fill = curriculum, label = curriculum)) +

scale_fill_brewer(type = "qual", palette = "Set2") +
geom_flow(stat = "alluvium", lode.guidance = "rightleft",

color = "darkgray") +
geom_stratum() +
theme(legend.position = "bottom") +
ggtitle("student curricula across several semesters")

5https://en.wikipedia.org/wiki/Iris_flower_data_set
6https://cran.r-project.org/web/packages/ggalluvial/vignettes/ggalluvial.html

62

https://en.wikipedia.org/wiki/Iris_flower_data_set
https://cran.r-project.org/web/packages/ggalluvial/vignettes/ggalluvial.html

CHAPTER 5. EXPLORATORY DATA ANALYSIS 5.4. BIBLIOGRAPHIC NOTES

0.0

2.5

5.0

7.5

10.0

CURR1 CURR3 CURR5 CURR7 CURR9 CURR11 CURR13 CURR15

semester

curriculum
Art History

Ceramic

Digital Art

Painting

Photography

Sculpure

NA

student curricula across several semesters

Things to note:

• We used the ggalluvial package of the ggplot2 ecosystem. More on ggplot2 in the Plotting Chapter.
• Time is on the 𝑥 axis. Categories are color coded.

Remark. If the width of the lines encode magnitude, the plot is also called a Sankey diagram.

5.4 Bibliographic Notes
Like any other topic in this book, you can consult Venables and Ripley (2013). The seminal book on EDA, written
long before R was around, is Tukey (1977). For an excellent text on robust statistics see Wilcox (2011).

5.5 Practice Yourself
1. Read about the Titanic data set using ?Titanic. Inspect it with the table and with the ftable commands.

Which do you prefer?

2. Inspect the Titanic data with a plot. Start with plot(Titanic) Try also lattice::dotplot. Which is the
passenger category with most survivors? Which plot do you prefer? Which scales better to more categories?

3. Read about the women data using ?women.

1. Compute the average of each variable. What is the average of the heights?
2. Plot a histogram of the heights. Add ticks using rug.
3. Plot a boxplot of the weights.
4. Plot the heights and weights using a scatter plot. Add ticks using rug.

4. Choose 𝛼 to define a new symmetry measure: 1/2(𝑥𝛼 + 𝑥1−𝛼) − 𝑥0.5. Write a function that computes it, and
apply it on women’s heights data.

5. Compute the covariance matrix of women’s heights and weights. Compute the correlation matrix. View the
correlation matrix as an image using lattice::levelplot.

6. Pick a dataset with two LONG continous variables from ?datasets. Plot it using hexbin::hexbin.

63

5.5. PRACTICE YOURSELF CHAPTER 5. EXPLORATORY DATA ANALYSIS

64

Chapter 6

Linear Models

6.1 Problem Setup
Example 6.1 (Bottle Cap Production). Consider a randomized experiment designed to study the effects of temper-
ature and pressure on the diameter of manufactured a bottle cap.

Example 6.2 (Rental Prices). Consider the prediction of rental prices given an appartment’s attributes.

Both examples require some statistical model, but they are very different. The first is a causal inference problem: we
want to design an intervention so that we need to recover the causal effect of temperature and pressure. The second
is a prediction1 problem, a.k.a. a forecasting2 problem, in which we don’t care about the causal effects, we just want
good predictions.

In this chapter we discuss the causal problem in Example 6.1. This means that when we assume a model, we assume
it is the actual data generating process, i.e., we assume the sampling distribution is well specified. In the econometric
literature, these are the structural equations3. The second type of problems is discussed in the Supervised Learning
Chapter 10.

Here are some more examples of the types of problems we are discussing.

Example 6.3 (Plant Growth). Consider the treatment of various plants with various fertilizers to study the fertilizer’s
effect on growth.

Example 6.4 (Return to Education). Consider the study of return to education by analyzing the incomes of individuals
with different education years.

Example 6.5 (Drug Effect). Consider the study of the effect of a new drug for hemophilia, by analyzing the level of
blood coagulation after the administration of various amounts of the new drug.

Let’s present the linear model. We assume that a response4 variable is the sum of effects of some factors5. Denoting the
response variable by 𝑦, the factors by 𝑥 = (𝑥1, … , 𝑥𝑝), and the effects by 𝛽 ∶= (𝛽1, … , 𝛽𝑝) the linear model assumption
implies that the expected response is the sum of the factors effects:

𝐸[𝑦] = 𝑥1𝛽1 + ⋯ + 𝑥𝑝𝛽𝑝 =
𝑝

∑
𝑗=1

𝑥𝑗𝛽𝑗 = 𝑥′𝛽. (6.1)

1https://en.wikipedia.org/wiki/Prediction
2https://en.wikipedia.org/wiki/Forecasting
3https://en.wikipedia.org/wiki/Structural_equation_modeling
4The “response” is also known as the “dependent” variable in the statistical literature, or the “labels” in the machine learning literature.
5The “factors” are also known as the “independent variable”, or “the design”, in the statistical literature, and the “features”, or

“attributes” in the machine learning literature.

65

https://en.wikipedia.org/wiki/Prediction
https://en.wikipedia.org/wiki/Forecasting
https://en.wikipedia.org/wiki/Structural_equation_modeling

6.1. PROBLEM SETUP CHAPTER 6. LINEAR MODELS

Clearly, there may be other factors that affect the the caps’ diameters. We thus introduce an error term6, denoted by
𝜀, to capture the effects of all unmodeled factors and measurement error7. The implied generative process of a sample
of 𝑖 = 1, … , 𝑛 observations it thus

𝑦𝑖 = 𝑥′
𝑖𝛽 + 𝜀𝑖 = ∑

𝑗
𝑥𝑖,𝑗𝛽𝑗 + 𝜀𝑖, 𝑖 = 1, … , 𝑛. (6.2)

or in matrix notation

𝑦 = 𝑋𝛽 + 𝜀. (6.3)

Let’s demonstrate Eq.(6.2). In our bottle-caps example [6.1], we may produce bottle caps at various temperatures.
We design an experiment where we produce bottle-caps at varying temperatures. Let 𝑥𝑖 be the temperature at which
bottle-cap 𝑖 was manufactured. Let 𝑦𝑖 be its measured diameter. By the linear model assumption, the expected
diameter varies linearly with the temperature: 𝔼[𝑦𝑖] = 𝛽0 + 𝑥𝑖𝛽1. This implies that 𝛽1 is the (expected) change in
diameter due to a unit change in temperature.

Remark. In Galton’s8 classical regression problem, where we try to seek the relation between the heights of sons and
fathers then 𝑝 = 1, 𝑦𝑖 is the height of the 𝑖’th father, and 𝑥𝑖 the height of the 𝑖’th son. This is a prediction problem,
more than it is a causal-inference problem.

There are many reasons linear models are very popular:

1. Before the computer age, these were pretty much the only models that could actually be computed9. The whole
Analysis of Variance (ANOVA) literature is an instance of linear models, that relies on sums of squares, which
do not require a computer to work with.

2. For purposes of prediction, where the actual data generating process is not of primary importance, they are
popular because they simply work. Why is that? They are simple so that they do not require a lot of data to be
computed. Put differently, they may be biased, but their variance is small enough to make them more accurate
than other models.

3. For non continuous predictors, any functional relation can be cast as a linear model.

4. For the purpose of screening, where we only want to show the existence of an effect, and are less interested in
the magnitude of that effect, a linear model is enough.

5. If the true generative relation is not linear, but smooth enough, then the linear function is a good approximation
via Taylor’s theorem.

There are still two matters we have to attend: (i) How to estimate 𝛽? (ii) How to perform inference?

In the simplest linear models the estimation of 𝛽 is done using the method of least squares. A linear model with least
squares estimation is known as Ordinary Least Squares (OLS). The OLS problem:

̂𝛽 ∶= 𝑎𝑟𝑔𝑚𝑖𝑛𝛽{∑
𝑖

(𝑦𝑖 − 𝑥′
𝑖𝛽)2}, (6.4)

and in matrix notation
̂𝛽 ∶= 𝑎𝑟𝑔𝑚𝑖𝑛𝛽{‖𝑦 − 𝑋𝛽‖2

2}. (6.5)

Remark. Personally, I prefer the matrix notation because it is suggestive of the geometry of the problem. The reader
is referred to Friedman et al. (2001), Section 3.2, for more on the geometry of OLS.

Different software suits, and even different R packages, solve Eq.(6.4) in different ways so that we skip the details of
how exactly it is solved. These are discussed in Chapters 17 and 18.

The last matter we need to attend is how to do inference on ̂𝛽. For that, we will need some assumptions on 𝜀. A
typical set of assumptions is the following:

6The “error term” is also known as the “noise”, or the “common causes of variability”.
7You may philosophize if the measurement error is a mere instance of unmodeled factors or not, but this has no real implication for our

purposes.
8https://en.wikipedia.org/wiki/Regression_toward_the_mean
9By “computed” we mean what statisticians call “fitted”, or “estimated”, and computer scientists call “learned”.

66

https://en.wikipedia.org/wiki/Regression_toward_the_mean

CHAPTER 6. LINEAR MODELS 6.2. OLS ESTIMATION IN R

1. Independence: we assume 𝜀𝑖 are independent of everything else. Think of them as the measurement error of
an instrument: it is independent of the measured value and of previous measurements.

2. Centered: we assume that 𝐸[𝜀] = 0, meaning there is no systematic error, sometimes it called The “Linearity
assumption”.

3. Normality: we will typically assume that 𝜀 ∼ 𝒩(0, 𝜎2), but we will later see that this is not really required.

We emphasize that these assumptions are only needed for inference on ̂𝛽 and not for the estimation itself, which is
done by the purely algorithmic framework of OLS.

Given the above assumptions, we can apply some probability theory and linear algebra to get the distribution of the
estimation error:

̂𝛽 − 𝛽 ∼ 𝒩(0, (𝑋′𝑋)−1𝜎2). (6.6)

The reason I am not too strict about the normality assumption above, is that Eq.(6.6) is approximately correct even
if 𝜀 is not normal, provided that there are many more observations than factors (𝑛 ≫ 𝑝).

6.2 OLS Estimation in R
We are now ready to estimate some linear models with R. We will use the whiteside data from the MASS package,
recording the outside temperature and gas consumption, before and after an apartment’s insulation.
library(MASS) # load the package
library(data.table) # for some data manipulations
data(whiteside) # load the data
head(whiteside) # inspect the data

Insul Temp Gas
1 Before -0.8 7.2
2 Before -0.7 6.9
3 Before 0.4 6.4
4 Before 2.5 6.0
5 Before 2.9 5.8
6 Before 3.2 5.8

We do the OLS estimation on the pre-insulation data with lm function (acronym for Linear Model), possibly the most
important function in R.
library(data.table)
whiteside <- data.table(whiteside)
lm.1 <- lm(Gas~Temp, data=whiteside[Insul=='Before']) # OLS estimation

Things to note:

• We used the tilde syntax Gas~Temp, reading “gas as linear function of temperature”.
• The data argument tells R where to look for the variables Gas and Temp. We used Insul=='Before' to subset

observations before the insulation.
• The result is assigned to the object lm.1.

Like any other language, spoken or programmable, there are many ways to say the same thing. Some more elegant
than others…
lm.1 <- lm(y=Gas, x=Temp, data=whiteside[whiteside$Insul=='Before',])
lm.1 <- lm(y=whiteside[whiteside$Insul=='Before',]$Gas,x=whiteside[whiteside$Insul=='Before',]$Temp)
lm.1 <- whiteside[whiteside$Insul=='Before',] %>% lm(Gas~Temp, data=.)

The output is an object of class lm.
class(lm.1)

[1] "lm"

67

6.2. OLS ESTIMATION IN R CHAPTER 6. LINEAR MODELS

Objects of class lm are very complicated. They store a lot of information which may be used for inference, plotting,
etc. The str function, short for “structure”, shows us the various elements of the object.
str(lm.1)

List of 12
$ coefficients : Named num [1:2] 6.854 -0.393
..- attr(*, "names")= chr [1:2] "(Intercept)" "Temp"
$ residuals : Named num [1:26] 0.0316 -0.2291 -0.2965 0.1293 0.0866 ...
..- attr(*, "names")= chr [1:26] "1" "2" "3" "4" ...
$ effects : Named num [1:26] -24.2203 -5.6485 -0.2541 0.1463 0.0988 ...
..- attr(*, "names")= chr [1:26] "(Intercept)" "Temp" "" "" ...
$ rank : int 2
$ fitted.values: Named num [1:26] 7.17 7.13 6.7 5.87 5.71 ...
..- attr(*, "names")= chr [1:26] "1" "2" "3" "4" ...
$ assign : int [1:2] 0 1
$ qr :List of 5
..$ qr : num [1:26, 1:2] -5.099 0.196 0.196 0.196 0.196 ...
.. ..- attr(*, "dimnames")=List of 2
..$: chr [1:26] "1" "2" "3" "4" ...
..$: chr [1:2] "(Intercept)" "Temp"
.. ..- attr(*, "assign")= int [1:2] 0 1
..$ qraux: num [1:2] 1.2 1.35
..$ pivot: int [1:2] 1 2
..$ tol : num 1e-07
..$ rank : int 2
..- attr(*, "class")= chr "qr"
$ df.residual : int 24
$ xlevels : Named list()
$ call : language lm(formula = Gas ~ Temp, data = whiteside[Insul == "Before"])
$ terms :Classes 'terms', 'formula' language Gas ~ Temp
.. ..- attr(*, "variables")= language list(Gas, Temp)
.. ..- attr(*, "factors")= int [1:2, 1] 0 1
..- attr(*, "dimnames")=List of 2
..$: chr [1:2] "Gas" "Temp"
..$: chr "Temp"
.. ..- attr(*, "term.labels")= chr "Temp"
.. ..- attr(*, "order")= int 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
.. ..- attr(*, "predvars")= language list(Gas, Temp)
.. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
..- attr(*, "names")= chr [1:2] "Gas" "Temp"
$ model :'data.frame': 26 obs. of 2 variables:
..$ Gas : num [1:26] 7.2 6.9 6.4 6 5.8 5.8 5.6 4.7 5.8 5.2 ...
..$ Temp: num [1:26] -0.8 -0.7 0.4 2.5 2.9 3.2 3.6 3.9 4.2 4.3 ...
..- attr(*, "terms")=Classes 'terms', 'formula' language Gas ~ Temp
..- attr(*, "variables")= language list(Gas, Temp)
..- attr(*, "factors")= int [1:2, 1] 0 1
..- attr(*, "dimnames")=List of 2
..$: chr [1:2] "Gas" "Temp"
..$: chr "Temp"
..- attr(*, "term.labels")= chr "Temp"
..- attr(*, "order")= int 1
..- attr(*, "intercept")= int 1
..- attr(*, "response")= int 1
..- attr(*, ".Environment")=<environment: R_GlobalEnv>

68

CHAPTER 6. LINEAR MODELS 6.2. OLS ESTIMATION IN R

..- attr(*, "predvars")= language list(Gas, Temp)
..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
..- attr(*, "names")= chr [1:2] "Gas" "Temp"
- attr(*, "class")= chr "lm"

In RStudio it is particularly easy to extract objects. Just write your.object$ and press tab after the $ for auto-
completion.

If we only want ̂𝛽, it can also be extracted with the coef function.
coef(lm.1)

(Intercept) Temp
6.8538277 -0.3932388

Things to note:

• R automatically adds an (Intercept) term. This means we estimate 𝐺𝑎𝑠 = 𝛽0 + 𝛽1𝑇 𝑒𝑚𝑝 + 𝜀 and not 𝐺𝑎𝑠 =
𝛽1𝑇 𝑒𝑚𝑝+𝜀. This makes sense because we are interested in the contribution of the temperature to the variability
of the gas consumption about its mean, and not about zero.

• The effect of temperature, i.e., ̂𝛽1, is -0.39. The negative sign means that the higher the temperature, the less
gas is consumed. The magnitude of the coefficient means that for a unit increase in the outside temperature, the
gas consumption decreases by 0.39 units.

We can use the predict function to make predictions, but we emphasize that if the purpose of the model is to make
predictions, and not interpret coefficients, better skip to the Supervised Learning Chapter 10.
Gas predictions (b0+b1*temperature) vs. actual Gas measurements, ideal slope should be 1.
plot(predict(lm.1)~whiteside[Insul=='Before',Gas])
plots identity line (slope 1), lty=Line Type, 2 means dashed line.
abline(0,1, lty=2)

3 4 5 6 7

3
4

5
6

7

whiteside[Insul == "Before", Gas]

pr
ed

ic
t(

lm
.1

)

The model seems to fit the data nicely. A common measure of the goodness of fit is the coefficient of determination,
more commonly known as the 𝑅2.

Definition 6.1 (R2). The coefficient of determination, denoted 𝑅2, is defined as

𝑅2 ∶= 1 − ∑𝑖(𝑦𝑖 − ̂𝑦𝑖)2

∑𝑖(𝑦𝑖 − ̄𝑦)2 , (6.7)

where ̂𝑦𝑖 is the model’s prediction, ̂𝑦𝑖 = 𝑥𝑖 ̂𝛽.

It can be easily computed
library(magrittr)
R2 <- function(y, y.hat){
numerator <- (y-y.hat)^2 %>% sum

69

6.3. INFERENCE CHAPTER 6. LINEAR MODELS

denominator <- (y-mean(y))^2 %>% sum
1-numerator/denominator

}
R2(y=whiteside[Insul=='Before',Gas], y.hat=predict(lm.1))

[1] 0.9438081

This is a nice result implying that about 94% of the variability in gas consumption can be attributed to changes in
the outside temperature.

Obviously, R does provide the means to compute something as basic as 𝑅2, but I will let you find it for yourselves.

6.3 Inference
To perform inference on ̂𝛽, in order to test hypotheses and construct confidence intervals, we need to quantify the
uncertainly in the reported ̂𝛽. This is exactly what Eq.(6.6) gives us.

Luckily, we don’t need to manipulate multivariate distributions manually, and everything we need is already imple-
mented. The most important function is summary which gives us an overview of the model’s fit. We emphasize that
fitting a model with lm is an assumption free algorithmic step. Inference using summary is not assumption free, and
requires the set of assumptions leading to Eq.(6.6).
summary(lm.1)

##
Call:
lm(formula = Gas ~ Temp, data = whiteside[Insul == "Before"])
##
Residuals:
Min 1Q Median 3Q Max
-0.62020 -0.19947 0.06068 0.16770 0.59778
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.85383 0.11842 57.88 <2e-16 ***
Temp -0.39324 0.01959 -20.08 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.2813 on 24 degrees of freedom
Multiple R-squared: 0.9438, Adjusted R-squared: 0.9415
F-statistic: 403.1 on 1 and 24 DF, p-value: < 2.2e-16

Things to note:

• The estimated ̂𝛽 is reported in the ‘Coefficients’ table, which has point estimates, standard errors, t-statistics,
and the p-values of a two-sided hypothesis test for each coefficient 𝐻0,𝑗 ∶ 𝛽𝑗 = 0, 𝑗 = 1, … , 𝑝.

• The 𝑅2 is reported at the bottom. The “Adjusted R-squared” is a variation that compensates for the model’s
complexity.

• The original call to lm is saved in the Call section.
• Some summary statistics of the residuals (𝑦𝑖 − ̂𝑦𝑖) in the Residuals section.
• The “residuals standard error”10 is √(𝑛 − 𝑝)−1 ∑𝑖(𝑦𝑖 − ̂𝑦𝑖)2. The denominator of this expression is the degrees

of freedom, 𝑛 − 𝑝, which can be thought of as the hardness of the problem.

As the name suggests, summary is merely a summary. The full summary(lm.1) object is a monstrous object. Its various
elements can be queried using str(sumary(lm.1)).

Can we check the assumptions required for inference? Some. Let’s start with the linearity assumption. If we were
wrong, and the data is not arranged about a linear line, the residuals will have some shape. We thus plot the residuals

10Sometimes known as the Root Mean Squared Error (RMSE).

70

CHAPTER 6. LINEAR MODELS 6.3. INFERENCE

as a function of the predictor to diagnose shape.
errors (epsilons) vs. temperature, should oscillate around zero.
plot(residuals(lm.1)~whiteside[Insul=='Before',Temp])
abline(0,0, lty=2)

0 2 4 6 8 10

−
0.

6
−

0.
2

0.
2

0.
6

whiteside[Insul == "Before", Temp]

re
si

du
al

s(
lm

.1
)

I can’t say I see any shape. Let’s fit a wrong model, just to see what “shape” means.
lm.1.1 <- lm(Gas~I(Temp^2), data=whiteside[Insul=='Before',])
plot(residuals(lm.1.1)~whiteside[Insul=='Before',Temp]); abline(0,0, lty=2)

0 2 4 6 8 10

−
0.

5
0.

0
0.

5
1.

0

whiteside[Insul == "Before", Temp]

re
si

du
al

s(
lm

.1
.1

)

Things to note:

• We used I(Temp^2) to specify the model 𝐺𝑎𝑠 = 𝛽0 + 𝛽1𝑇 𝑒𝑚𝑝2 + 𝜀.
• The residuals have a “belly”. Because they are not a cloud around the linear trend, and we have the wrong

model.

To the next assumption. We assumed 𝜀𝑖 are independent of everything else. The residuals, 𝑦𝑖 − ̂𝑦𝑖 can be thought of
a sample of 𝜀𝑖. When diagnosing the linearity assumption, we already saw their distribution does not vary with the
𝑥’s, Temp in our case. They may be correlated with themselves; a positive departure from the model, may be followed
by a series of positive departures etc. Diagnosing these auto-correlations is a real art, which is not part of our course.

The last assumption we required is normality. As previously stated, if 𝑛 ≫ 𝑝, this assumption can be relaxed. If 𝑛 is
in the order of 𝑝, we need to verify this assumption. My favorite tool for this task is the qqplot. A qqplot compares
the quantiles of the sample with the respective quantiles of the assumed distribution. If quantiles align along a line,
the assumed distribution is OK. If quantiles depart from a line, then the assumed distribution does not fit the sample.
qqnorm(resid(lm.1))

71

6.3. INFERENCE CHAPTER 6. LINEAR MODELS

−2 −1 0 1 2

−
0.

6
−

0.
2

0.
2

0.
6

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Things to note:

• The qqnorm function plots a qqplot against a normal distribution. For non-normal distributions try qqplot.
• resid(lm.1) extracts the residuals from the linear model, i.e., the vector of 𝑦𝑖 − 𝑥′

𝑖 ̂𝛽.
Judging from the figure, the normality assumption is quite plausible. Let’s try the same on a non-normal sample,
namely a uniformly distributed sample, to see how that would look.
qqnorm(runif(100))

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

6.3.1 Testing a Hypothesis on a Single Coefficient
The first inferential test we consider is a hypothesis test on a single coefficient. In our gas example, we may want
to test that the temperature has no effect on the gas consumption. The answer for that is given immediately by
summary(lm.1)
summary.lm1 <- summary(lm.1)
coefs.lm1 <- summary.lm1$coefficients
coefs.lm1

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.8538277 0.11842341 57.87561 2.717533e-27
Temp -0.3932388 0.01958601 -20.07754 1.640469e-16

We see that the p-value for 𝐻0,1 ∶ 𝛽1 = 0 against a two sided alternative is effectively 0 (row 2 column 4), so that 𝛽1
is unlikely to be 0 (the null hypothesis can be rejected).

72

CHAPTER 6. LINEAR MODELS 6.3. INFERENCE

6.3.2 Constructing a Confidence Interval on a Single Coefficient

Since the summary function gives us the standard errors of ̂𝛽, we can immediately compute ̂𝛽𝑗 ± 2√𝑉 𝑎𝑟[̂𝛽𝑗] to get
ourselves a (roughly) 95% confidence interval. In our example the interval is
coefs.lm1[2,1] + c(-2,2) * coefs.lm1[2,2]

[1] -0.4324108 -0.3540668

Things to note:

• The function confint(lm.1) can calculate it. Sometimes it’s more simple to write 20 characters of code than
finding a function that does it for us.

6.3.3 Multiple Regression
Remark. Multiple regression is not to be confused with multivariate regression discussed in Chapter 9.

The swiss dataset encodes the fertility at each of Switzerland’s 47 French speaking provinces, along other socio-
economic indicators. Let’s see if these are statistically related:
head(swiss)

Fertility Agriculture Examination Education Catholic
Courtelary 80.2 17.0 15 12 9.96
Delemont 83.1 45.1 6 9 84.84
Franches-Mnt 92.5 39.7 5 5 93.40
Moutier 85.8 36.5 12 7 33.77
Neuveville 76.9 43.5 17 15 5.16
Porrentruy 76.1 35.3 9 7 90.57
Infant.Mortality
Courtelary 22.2
Delemont 22.2
Franches-Mnt 20.2
Moutier 20.3
Neuveville 20.6
Porrentruy 26.6
lm.5 <- lm(data=swiss, Fertility~Agriculture+Examination+Education+Catholic+Infant.Mortality)
summary(lm.5)

##
Call:
lm(formula = Fertility ~ Agriculture + Examination + Education +
Catholic + Infant.Mortality, data = swiss)
##
Residuals:
Min 1Q Median 3Q Max
-15.2743 -5.2617 0.5032 4.1198 15.3213
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 66.91518 10.70604 6.250 1.91e-07 ***
Agriculture -0.17211 0.07030 -2.448 0.01873 *
Examination -0.25801 0.25388 -1.016 0.31546
Education -0.87094 0.18303 -4.758 2.43e-05 ***
Catholic 0.10412 0.03526 2.953 0.00519 **
Infant.Mortality 1.07705 0.38172 2.822 0.00734 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

73

6.3. INFERENCE CHAPTER 6. LINEAR MODELS

Residual standard error: 7.165 on 41 degrees of freedom
Multiple R-squared: 0.7067, Adjusted R-squared: 0.671
F-statistic: 19.76 on 5 and 41 DF, p-value: 5.594e-10

Things to note:

• The ~ syntax allows to specify various predictors separated by the + operator.
• The summary of the model now reports the estimated effect, i.e., the regression coefficient, of each of the variables.

Clearly, naming each variable explicitly is a tedious task if there are many. The use of Fertility~. in the next
example reads: “Fertility as a function of all other variables in the swiss data.frame”.
lm.5 <- lm(data=swiss, Fertility~.)
summary(lm.5)

##
Call:
lm(formula = Fertility ~ ., data = swiss)
##
Residuals:
Min 1Q Median 3Q Max
-15.2743 -5.2617 0.5032 4.1198 15.3213
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 66.91518 10.70604 6.250 1.91e-07 ***
Agriculture -0.17211 0.07030 -2.448 0.01873 *
Examination -0.25801 0.25388 -1.016 0.31546
Education -0.87094 0.18303 -4.758 2.43e-05 ***
Catholic 0.10412 0.03526 2.953 0.00519 **
Infant.Mortality 1.07705 0.38172 2.822 0.00734 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 7.165 on 41 degrees of freedom
Multiple R-squared: 0.7067, Adjusted R-squared: 0.671
F-statistic: 19.76 on 5 and 41 DF, p-value: 5.594e-10

6.3.4 ANOVA (*)
Our next example11 contains a hypothetical sample of 60 participants who are divided into three stress reduction
treatment groups (mental, physical, and medical) and three age groups groups. The stress reduction values are
represented on a scale that ranges from 1 to 10. The values represent how effective the treatment programs were at
reducing participant’s stress levels, with larger effects indicating higher effectiveness.
twoWay <- read.csv('data/dataset_anova_twoWay_comparisons.csv')
head(twoWay)

Treatment Age StressReduction
1 mental young 10
2 mental young 9
3 mental young 8
4 mental mid 7
5 mental mid 6
6 mental mid 5

How many observations per group?
table(twoWay$Treatment, twoWay$Age)

11The example is taken from http://rtutorialseries.blogspot.co.il/2011/02/r-tutorial-series-two-way-anova-with.html

74

http://rtutorialseries.blogspot.co.il/2011/02/r-tutorial-series-two-way-anova-with.html

CHAPTER 6. LINEAR MODELS 6.3. INFERENCE

##
mid old young
medical 3 3 3
mental 3 3 3
physical 3 3 3

Since we have two factorial predictors, this multiple regression is nothing but a two way ANOVA. Let’s fit the model
and inspect it.
lm.2 <- lm(StressReduction~.,data=twoWay)
summary(lm.2)

##
Call:
lm(formula = StressReduction ~ ., data = twoWay)
##
Residuals:
Min 1Q Median 3Q Max
-1 -1 0 1 1
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0000 0.3892 10.276 7.34e-10 ***
Treatmentmental 2.0000 0.4264 4.690 0.000112 ***
Treatmentphysical 1.0000 0.4264 2.345 0.028444 *
Ageold -3.0000 0.4264 -7.036 4.65e-07 ***
Ageyoung 3.0000 0.4264 7.036 4.65e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.9045 on 22 degrees of freedom
Multiple R-squared: 0.9091, Adjusted R-squared: 0.8926
F-statistic: 55 on 4 and 22 DF, p-value: 3.855e-11

Things to note:

• The StressReduction~. syntax is read as “Stress reduction as a function of everything else”.

• All the (main) effects and the intercept seem to be significant.

• Mid age and medical treatment are missing, hence it is implied that they are the baseline, and this model accounts
for the departure from this baseline.

• The data has 2 factors, but the coefficients table has 4 predictors. This is because lm noticed that Treatment
and Age are factors. Each level of each factor is thus encoded as a different (dummy) variable. The numerical
values of the factors are meaningless. Instead, R has constructed a dummy variable for each level of each factor.
The names of the effect are a concatenation of the factor’s name, and its level. You can inspect these dummy
variables with the model.matrix command.

model.matrix(lm.2) %>% lattice::levelplot()

row

co
lu

m
n

(Intercept)
Treatmentmental

Treatmentphysical
Ageold

Ageyoung

123456789101112131415161718192021222324252627

0.0
0.2
0.4
0.6
0.8
1.0

If you don’t want the default dummy coding, look at
?contrasts.

If you are more familiar with the ANOVA literature, or that you don’t want the effects of each level separately, but
rather, the effect of all the levels of each factor, use the anova command.

75

6.3. INFERENCE CHAPTER 6. LINEAR MODELS

anova(lm.2)

Analysis of Variance Table
##
Response: StressReduction
Df Sum Sq Mean Sq F value Pr(>F)
Treatment 2 18 9.000 11 0.0004883 ***
Age 2 162 81.000 99 1e-11 ***
Residuals 22 18 0.818

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Things to note:

• The ANOVA table, unlike the summary function, tests if any of the levels of a factor has an effect, and not one
level at a time.

• The significance of each factor is computed using an F-test.
• The degrees of freedom, encoding the number of levels of a factor, is given in the Df column.
• The StressReduction seems to vary for different ages and treatments, since both factors are significant.

If you are extremely more comfortable with the ANOVA literature, you could have replaced the lm command with the
aov command all along.
lm.2.2 <- aov(StressReduction~.,data=twoWay)
class(lm.2.2)

[1] "aov" "lm"
summary(lm.2.2)

Df Sum Sq Mean Sq F value Pr(>F)
Treatment 2 18 9.00 11 0.000488 ***
Age 2 162 81.00 99 1e-11 ***
Residuals 22 18 0.82

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Things to note:

• The lm function has been replaced with an aov function.
• The output of aov is an aov class object, which extends the lm class.
• The summary of an aov is not like the summary of an lm object, but rather, like an ANOVA table.

As in any two-way ANOVA, we may want to ask if different age groups respond differently to different treatments. In
the statistical parlance, this is called an interaction, or more precisely, an interaction of order 2.
lm.3 <- lm(StressReduction~Treatment+Age+Treatment:Age-1,data=twoWay)

The syntax StressReduction~Treatment+Age+Treatment:Age-1 tells R to include main effects of Treatment, Age,
and their interactions. The -1 removes the intercept. Here are other ways to specify the same model.
lm.3 <- lm(StressReduction ~ Treatment * Age - 1,data=twoWay)
lm.3 <- lm(StressReduction~(.)^2 - 1,data=twoWay)

The syntax Treatment * Age means “main effects with second order interactions”. The syntax (.)^2 means “every-
thing with second order interactions”, this time we don’t have I() as in the temperature example because here we want
the second order interaction and not the square of each variable.

Let’s inspect the model
summary(lm.3)

##
Call:
lm(formula = StressReduction ~ Treatment + Age + Treatment:Age -

76

CHAPTER 6. LINEAR MODELS 6.3. INFERENCE

1, data = twoWay)
##
Residuals:
Min 1Q Median 3Q Max
-1 -1 0 1 1
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
Treatmentmedical 4.000e+00 5.774e-01 6.928 1.78e-06 ***
Treatmentmental 6.000e+00 5.774e-01 10.392 4.92e-09 ***
Treatmentphysical 5.000e+00 5.774e-01 8.660 7.78e-08 ***
Ageold -3.000e+00 8.165e-01 -3.674 0.00174 **
Ageyoung 3.000e+00 8.165e-01 3.674 0.00174 **
Treatmentmental:Ageold 1.136e-16 1.155e+00 0.000 1.00000
Treatmentphysical:Ageold 2.392e-16 1.155e+00 0.000 1.00000
Treatmentmental:Ageyoung -1.037e-15 1.155e+00 0.000 1.00000
Treatmentphysical:Ageyoung 2.564e-16 1.155e+00 0.000 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1 on 18 degrees of freedom
Multiple R-squared: 0.9794, Adjusted R-squared: 0.9691
F-statistic: 95 on 9 and 18 DF, p-value: 2.556e-13

Things to note:

• There are still 5 main effects, but also 4 interactions. This is because when allowing a different average response
for every 𝑇 𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ∗ 𝐴𝑔𝑒 combination, we are effectively estimating 3 ∗ 3 = 9 cell means, even if they are not
parametrized as cell means, but rather as main effect and interactions.

• The interactions do not seem to be significant.
• The assumptions required for inference are clearly not met in this example, which is there just to demonstrate

R’s capabilities.

Asking if all the interactions are significant, is asking if the different age groups have the same response to different
treatments. Can we answer that based on the various interactions? We might, but it is possible that no single
interaction is significant, while the combination is. To test for all the interactions together, we can simply check if the
model without interactions is (significantly) better than a model with interactions. I.e., compare lm.2 to lm.3. This
is done with the anova command.
anova(lm.2,lm.3, test='F')

Analysis of Variance Table
##
Model 1: StressReduction ~ Treatment + Age
Model 2: StressReduction ~ Treatment + Age + Treatment:Age - 1
Res.Df RSS Df Sum of Sq F Pr(>F)
1 22 18
2 18 18 4 7.1054e-15 0 1

We see that lm.3 is not (significantly) better than lm.2, so that we can conclude that there are no interactions:
different ages have the same response to different treatments.

6.3.5 Testing a Hypothesis on a Single Contrast (*)
Returning to the model without interactions, lm.2.
coef(summary(lm.2))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4 0.3892495 10.276186 7.336391e-10
Treatmentmental 2 0.4264014 4.690416 1.117774e-04

77

6.4. EXTRA DIAGNOSTICS CHAPTER 6. LINEAR MODELS

Treatmentphysical 1 0.4264014 2.345208 2.844400e-02
Ageold -3 0.4264014 -7.035624 4.647299e-07
Ageyoung 3 0.4264014 7.035624 4.647299e-07

We see that the effect of the various treatments is rather similar. It is possible that all treatments actually have the
same effect. Comparing the effects of factor levels is called a contrast. Let’s test if the medical treatment, has in fact,
the same effect as the physical treatment.
library(multcomp)
my.contrast <- matrix(c(-1,0,1,0,0), nrow = 1)
lm.4 <- glht(lm.2, linfct=my.contrast)
summary(lm.4)

##
Simultaneous Tests for General Linear Hypotheses
##
Fit: lm(formula = StressReduction ~ ., data = twoWay)
##
Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)
1 == 0 -3.0000 0.7177 -4.18 0.000389 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

Things to note:

• A contrast is a linear function of the coefficients. In our example 𝐻0 ∶ 𝛽1 −𝛽3 = 0, which justifies the construction
of my.contrast.

• We used the glht function (generalized linear hypothesis test) from the package multcomp.
• The contrast is significant, i.e., the effect of a medical treatment, is different than that of a physical treatment.

6.4 Extra Diagnostics
6.4.1 Diagnosing Heteroskedasticity
Textbook assumptions for inference on ̂𝛽𝑂𝐿𝑆 include the homoskedasticiy assumption, i.e., 𝑉 𝑎𝑟[𝜀] is fixed and inde-
pendent of everyhting. This comes from viewing 𝜀 as a measurement error. It may not be the case when viewing 𝜀
as “all other effect not included in the model”. In technical terms, homoskedastocity implies that 𝑉 𝑎𝑟[𝜀] is a scaled
identity matrix. Heteroskedasticity means that 𝑉 𝑎𝑟[𝜀] is a diagonal matrix. Because a scaled identify matrix implies
that the quantiles of a multivariate Gaussian are spheres, testing for heteroskedasticity is also known as a Sphericity
Test.

Can we verify homoskedasticity, and do we need it?

To verify homoskedasticity we only need to look at the residuals of a model. If they seem to have the same variability
for all 𝑥 we are clear. If 𝑥 is multivariate, and we cannot visualise residuals, 𝑦𝑖 − ̂𝑦𝑖 as a function of 𝑥, then visualising
it as a function of ̂𝑦𝑖 is also good.

Another way of dealing with heteroskedasticity is by estimating variances for groups of observations separately. This
is the Cluster Robust Standard Errors discussed in 8.4.1.

Can use perform a test to infer homoskedasticity? In the frequentist hypotesis testing framework we can only reject
homoskedasticity, not accept it. In the Bayesian hypotesis testing12 framework we can indeed infer homoskedasticity,
but one would have to defend his/her priors.

For some tests that detect heteroskedasticity see the olsrr13 package. For an econometric flavored approach to the
problem, see the plm14 package, and its excellent vignette15.

12https://en.wikipedia.org/wiki/Bayesian_inference
13https://cran.r-project.org/web/packages/olsrr/vignettes/heteroskedasticity.html
14https://cran.r-project.org/package=plm
15https://cran.r-project.org/web/packages/plm/vignettes/plmPackage.html

78

https://en.wikipedia.org/wiki/Bayesian_inference
https://cran.r-project.org/web/packages/olsrr/vignettes/heteroskedasticity.html
https://cran.r-project.org/package=plm
https://cran.r-project.org/web/packages/plm/vignettes/plmPackage.html

CHAPTER 6. LINEAR MODELS 6.5. BIBLIOGRAPHIC NOTES

6.4.2 Diagnosing Multicolinearity
When designing an experiment (e.g. RCTs16) we will assure treatments are “balanced”, so that one effect estimates
are not correlated. This is not always possible, especially not in observational studies. If various variables capture
the same effect, the certainty in the effect will “spread” over these variables. Formally: the standard errros of effect
estimates will increase. Perhaps more importantly- causal inference with correlated predictors is very hard to interpret,
because changes in outcome may be attibuted to any on of the (correlated) predictors.

We will eschew the complicated philosophical implication of causal infernece with correlated predictors, and merely
refer the reader to the package olsrr17 for some popular tools to diagnose multicolinearity.

6.5 Bibliographic Notes
Like any other topic in this book, you can consult Venables and Ripley (2013) for more on linear models. For the
theory of linear models, I like Greene (2003).

6.6 Practice Yourself
1. Inspect women’s heights and weights with ?women.

1. What is the change in weight per unit change in height? Use the lm function.
2. Is the relation of height on weight significant? Use summary.
3. Plot the residuals of the linear model with plot and resid.
4. Plot the predictions of the model using abline.
5. Inspect the normality of residuals using qqnorm.
6. Inspect the design matrix using model.matrix.

2. Write a function that takes an lm class object, and returns the confidence interval on the first coefficient. Apply
it on the height and weight data.

3. Use the ANOVA function to test the significance of the effect of height.

4. Read about the “mtcars” dataset using ? mtcars. Inspect the dependency of the fuel consumption (mpg) in the
weight (wt) and the 1/4 mile time (qsec).

1. Make a pairs scatter plot with plot(mtcars[,c("mpg","wt","qsec")]) Does the connection look linear?
2. Fit a multiple linear regression with lm. Call it model1.
3. Try to add the transmission (am) as independent variable. Let R know this is a categorical variable with

factor(am). Call it model2.
4. Compare the “Adjusted R-squared” measure of the two models (we can’t use the regular R2 to compare

two models with a different number of variables).
5. Do the coefficients significant?
6. Inspect the normality of residuals and the linearity assumptions.
7. Now Inspect the hypothesis that the effect of weight is different between the transmission types with adding

interaction to the model wt*factor(am).
8. According to this model, what is the addition of one unit of weight in a manual transmission to the fuel

consumption (-2.973-4.141=-7.11)?

16https://en.wikipedia.org/wiki/Randomized_controlled_trial
17https://cran.r-project.org/web/packages/olsrr/vignettes/regression_diagnostics.html

79

https://en.wikipedia.org/wiki/Randomized_controlled_trial
https://cran.r-project.org/web/packages/olsrr/vignettes/regression_diagnostics.html

6.6. PRACTICE YOURSELF CHAPTER 6. LINEAR MODELS

80

Chapter 7

Generalized Linear Models

Example 7.1. Consider the relation between cigarettes smoked, and the occurance of lung cancer. Do we expect the
probability of cancer to be linear in the number of cigarettes? Probably not. Do we expect the variability of events to
be constant about the trend? Probably not.

Example 7.2. Consider the relation between the travel times to the distance travelled. Do you agree that the longer
the distance travelled, then not only the travel times get longer, but they also get more variable?

7.1 Problem Setup
In the Linear Models Chapter 6, we assumed the generative process to be linear in the effects of the predictors 𝑥. We
now write that same linear model, slightly differently:

𝑦|𝑥 ∼ 𝒩(𝑥′𝛽, 𝜎2).

This model not allow for the non-linear relations of Example 7.1, nor does it allow for the distribution of 𝜀 to change
with 𝑥, as in Example 7.2. Generalize linear models (GLM), as the name suggests, are a generalization of the linear
models in Chapter 6 that allow that1.

For Example 7.1, we would like something in the lines of

𝑦|𝑥 ∼ 𝐵𝑖𝑛𝑜𝑚(1, 𝑝(𝑥))

For Example 7.2, we would like something in the lines of

𝑦|𝑥 ∼ 𝒩(𝑥′𝛽, 𝜎2(𝑥)),
or more generally

𝑦|𝑥 ∼ 𝒩(𝜇(𝑥), 𝜎2(𝑥)),
or maybe not Gaussian

𝑦|𝑥 ∼ 𝑃𝑜𝑖𝑠(𝜆(𝑥)).

Even more generally, for some distribution 𝐹(𝜃), with a parameter 𝜃, we would like to assume that the data is generated
via

𝑦|𝑥 ∼ 𝐹(𝜃(𝑥)) (7.1)

Possible examples include

𝑦|𝑥 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆(𝑥)) (7.2)
𝑦|𝑥 ∼ 𝐸𝑥𝑝(𝜆(𝑥)) (7.3)
𝑦|𝑥 ∼ 𝒩(𝜇(𝑥), 𝜎2(𝑥)) (7.4)

1Do not confuse generalized linear models with non-linear regression2, or generalized least squares3. These are different things, that we
do not discuss.

81

7.2. LOGISTIC REGRESSION CHAPTER 7. GENERALIZED LINEAR MODELS

GLMs allow models of the type of Eq.(7.1), while imposing some constraints on 𝐹 and on the relation 𝜃(𝑥). GLMs
assume the data distribution 𝐹 to be in a “well-behaved” family known as the Natural Exponential Family4 of distri-
butions. This family includes the Gaussian, Gamma, Binomial, Poisson, and Negative Binomial distributions. These
five include as special cases the exponential, chi-squared, Rayleigh, Weibull, Bernoulli, and geometric distributions.

GLMs also assume that the distribution’s parameter, 𝜃, is some simple function of a linear combination of the effects. In
our cigarettes example this amounts to assuming that each cigarette has an additive effect, but not on the probability
of cancer, but rather, on some simple function of it. Formally

𝑔(𝜃(𝑥)) = 𝑥′𝛽,
and we recall that

𝑥′𝛽 = 𝛽0 + ∑
𝑗

𝑥𝑗𝛽𝑗.

The function 𝑔 is called the link function, its inverse, 𝑔−1 is the mean function. We thus say that “the effects of each
cigarette is linear in link scale”. This terminology will later be required to understand R’s output.

7.2 Logistic Regression
The best known of the GLM class of models is the logistic regression that deals with Binomial, or more precisely,
Bernoulli-distributed data. The link function in the logistic regression is the logit function

𝑔(𝑡) = 𝑙𝑜𝑔 (𝑡
(1 − 𝑡)) (7.5)

implying that under the logistic model assumptions

𝑦|𝑥 ∼ 𝐵𝑖𝑛𝑜𝑚 (1, 𝑝 = 𝑒𝑥′𝛽

1 + 𝑒𝑥′𝛽) . (7.6)

Before we fit such a model, we try to justify this construction, in particular, the enigmatic link function in Eq.(7.5).
Let’s look at the simplest possible case: the comparison of two groups indexed by 𝑥: 𝑥 = 0 for the first, and 𝑥 = 1 for
the second. We start with some definitions.

Definition 7.1 (Odds). The odds, of a binary random variable, 𝑦, is defined as

𝑃(𝑦 = 1)
𝑃(𝑦 = 0) .

Odds are the same as probabilities, but instead of telling me there is a 66% of success, they tell me the odds of success
are “2 to 1”. If you ever placed a bet, the language of “odds” should not be unfamiliar to you.

Definition 7.2 (Odds Ratio). The odds ratio between two binary random variables, 𝑦1 and 𝑦2, is defined as the ratio
between their odds. Formally:

𝑂𝑅(𝑦1, 𝑦2) ∶= 𝑃(𝑦1 = 1)/𝑃(𝑦1 = 0)
𝑃(𝑦2 = 1)/𝑃(𝑦2 = 0) .

Odds ratios (OR) compare between the probabilities of two groups, only that it does not compare them in probability
scale, but rather in odds scale. You can also think of ORs as a measure of distance between two Brenoulli distributions.
ORs have better mathematical properties than other candidate distance measures, such as 𝑃(𝑦1 = 1) − 𝑃(𝑦2 = 1).
Under the logit link assumption formalized in Eq.(7.6), the OR between two conditions indexed by 𝑦|𝑥 = 1 and 𝑦|𝑥 = 0,
returns:

𝑂𝑅(𝑦|𝑥 = 1, 𝑦|𝑥 = 0) = 𝑃(𝑦 = 1|𝑥 = 1)/𝑃(𝑦 = 0|𝑥 = 1)
𝑃(𝑦 = 1|𝑥 = 0)/𝑃(𝑦 = 0|𝑥 = 0) = 𝑒𝛽1 . (7.7)

The last equality demystifies the choice of the link function in the logistic regression: it allows us to interpret
𝛽 of the logistic regression as a measure of change of binary random variables, namely, as the (log)
odds-ratios due to a unit increase in 𝑥.

4https://en.wikipedia.org/wiki/Natural_exponential_family

82

https://en.wikipedia.org/wiki/Natural_exponential_family

CHAPTER 7. GENERALIZED LINEAR MODELS 7.2. LOGISTIC REGRESSION

Remark. Another popular link function is the normal quantile function, a.k.a., the Gaussian inverse CDF, leading to
probit regression instead of logistic regression.

7.2.1 Logistic Regression with R
Let’s get us some data. The PlantGrowth data records the weight of plants under three conditions: control, treatment1,
and treatment2.
head(PlantGrowth)

weight group
1 4.17 ctrl
2 5.58 ctrl
3 5.18 ctrl
4 6.11 ctrl
5 4.50 ctrl
6 4.61 ctrl

We will now attach the data so that its contents is available in the workspace (don’t forget to detach afterwards, or
you can expect some conflicting object names). We will also use the cut function to create a binary response variable
for Light, and Heavy plants (we are doing logistic regression, so we need a two-class response), notice also that cut
splits according to range and not to length. As a general rule of thumb, when we discretize continuous variables, we
lose information. For pedagogical reasons, however, we will proceed with this bad practice.

Look at the following output and think: how many group effects do we expect? What should be the sign of each
effect?
attach(PlantGrowth)
weight.factor<- cut(weight, 2, labels=c('Light', 'Heavy')) # binarize weights
plot(table(group, weight.factor))

table(group, weight.factor)

group

w
ei

gh
t.f

ac
to

r

ctrl trt1 trt2

Li
gh

t
H

ea
vy

Let’s fit a logistic regression, and inspect the output.
glm.1<- glm(weight.factor~group, family=binomial)
summary(glm.1)

##
Call:
glm(formula = weight.factor ~ group, family = binomial)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.1460 -0.6681 0.4590 0.8728 1.7941
##

83

7.2. LOGISTIC REGRESSION CHAPTER 7. GENERALIZED LINEAR MODELS

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.4055 0.6455 0.628 0.5299
grouptrt1 -1.7918 1.0206 -1.756 0.0792 .
grouptrt2 1.7918 1.2360 1.450 0.1471

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 41.054 on 29 degrees of freedom
Residual deviance: 29.970 on 27 degrees of freedom
AIC: 35.97
##
Number of Fisher Scoring iterations: 4

Things to note:

• The glm function is our workhorse for all GLM models.
• The family argument of glm tells R the respose variable is brenoulli, thus, performing a logistic regression.
• The summary function is content aware. It gives a different output for glm class objects than for other objects,

such as the lm we saw in Chapter 6. In fact, what summary does is merely call summary.glm.
• As usual, we get the coefficients table, but recall that they are to be interpreted as (log) odd-ratios, i.e., in “link

scale”. To return to probabilities (“response scale”), we will need to undo the logistic transformation.
• As usual, we get the significance for the test of no-effect, versus a two-sided alternative. P-values are asymptotic,

thus, only approximate (and can be very bad approximations in small samples).
• The residuals of glm are slightly different than the lm residuals, and called Deviance Residuals.
• For help see ?glm, ?family, and ?summary.glm.

Like in the linear models, we can use an ANOVA table to check if treatments have any effect, and not one treatment
at a time. In the case of GLMs, this is called an analysis of deviance table.
anova(glm.1, test='LRT')

Analysis of Deviance Table
##
Model: binomial, link: logit
##
Response: weight.factor
##
Terms added sequentially (first to last)
##
##
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 29 41.054
group 2 11.084 27 29.970 0.003919 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Things to note:

• The anova function, like the summary function, are content-aware and produce a different output for the glm
class than for the lm class. All that anova does is call anova.glm.

• In GLMs there is no canonical test (like the F test for lm). LRT implies we want an approximate Likelihood Ratio
Test. We thus specify the type of test desired with the test argument.

• The distribution of the weights of the plants does vary with the treatment given, as we may see from the
significance of the group factor.

• Readers familiar with ANOVA tables, should know that we computed the GLM equivalent of a type I sum-
of-squares. Run drop1(glm.1, test='Chisq') for a GLM equivalent of a type III sum-of-squares.

• For help see ?anova.glm.

84

CHAPTER 7. GENERALIZED LINEAR MODELS 7.2. LOGISTIC REGRESSION

Let’s predict the probability of a heavy plant for each treatment.
predict(glm.1, type='response')

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
19 20 21 22 23 24 25 26 27 28 29 30
0.2 0.2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Things to note:

• Like the summary and anova functions, the predict function is aware that its input is of glm class. All that
predict does is call predict.glm.

• In GLMs there are many types of predictions. The type argument controls which type is returned. Use
type=response for predictions in probability scale; use ‘type=link’ for predictions in log-odds scale.

• How do I know we are predicting the probability of a heavy plant, and not a light plant? Just run
contrasts(weight.factor) to see which of the categories of the factor weight.factor is encoded as 1, and
which as 0.

• For help see ?predict.glm.

Let’s detach the data so it is no longer in our workspace, and object names do not collide.
detach(PlantGrowth)

We gave an example with a factorial (i.e. discrete) predictor. We can do the same with multiple continuous predictors.
data('Pima.te', package='MASS') # Loads data
head(Pima.te)

npreg glu bp skin bmi ped age type
1 6 148 72 35 33.6 0.627 50 Yes
2 1 85 66 29 26.6 0.351 31 No
3 1 89 66 23 28.1 0.167 21 No
4 3 78 50 32 31.0 0.248 26 Yes
5 2 197 70 45 30.5 0.158 53 Yes
6 5 166 72 19 25.8 0.587 51 Yes
glm.2<- step(glm(type~., data=Pima.te, family=binomial(link='probit')))

Start: AIC=302.41
type ~ npreg + glu + bp + skin + bmi + ped + age
##
Df Deviance AIC
- bp 1 286.92 300.92
- skin 1 286.94 300.94
- age 1 287.74 301.74
<none> 286.41 302.41
- ped 1 291.06 305.06
- npreg 1 292.55 306.55
- bmi 1 294.52 308.52
- glu 1 342.35 356.35
##
Step: AIC=300.92
type ~ npreg + glu + skin + bmi + ped + age
##
Df Deviance AIC
- skin 1 287.50 299.50
- age 1 287.92 299.92
<none> 286.92 300.92
- ped 1 291.70 303.70
- npreg 1 293.06 305.06
- bmi 1 294.55 306.55

85

7.2. LOGISTIC REGRESSION CHAPTER 7. GENERALIZED LINEAR MODELS

- glu 1 342.41 354.41
##
Step: AIC=299.5
type ~ npreg + glu + bmi + ped + age
##
Df Deviance AIC
- age 1 288.47 298.47
<none> 287.50 299.50
- ped 1 292.41 302.41
- npreg 1 294.21 304.21
- bmi 1 304.37 314.37
- glu 1 343.48 353.48
##
Step: AIC=298.47
type ~ npreg + glu + bmi + ped
##
Df Deviance AIC
<none> 288.47 298.47
- ped 1 293.78 301.78
- bmi 1 305.17 313.17
- npreg 1 305.49 313.49
- glu 1 349.25 357.25
summary(glm.2)

##
Call:
glm(formula = type ~ npreg + glu + bmi + ped, family = binomial(link = "probit"),
data = Pima.te)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.9935 -0.6487 -0.3585 0.6326 2.5791
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.445143 0.569373 -9.563 < 2e-16 ***
npreg 0.102410 0.025607 3.999 6.35e-05 ***
glu 0.021739 0.002988 7.276 3.45e-13 ***
bmi 0.048709 0.012291 3.963 7.40e-05 ***
ped 0.534366 0.250584 2.132 0.033 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 420.30 on 331 degrees of freedom
Residual deviance: 288.47 on 327 degrees of freedom
AIC: 298.47
##
Number of Fisher Scoring iterations: 5

Things to note:

• We used the ~. syntax to tell R to fit a model with all the available predictors.
• Since we want to focus on significant predictors, we used the step function to perform a step-wise regression,

i.e. sequentially remove non-significant predictors. The function reports each model it has checked, and the
variable it has decided to remove at each step.

• The output of step is a single model, with the subset of selected predictors.

86

CHAPTER 7. GENERALIZED LINEAR MODELS 7.3. POISSON REGRESSION

7.3 Poisson Regression

Poisson regression means we fit a model assuming 𝑦|𝑥 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆(𝑥)). Put differently, we assume that for each
treatment, encoded as a combinations of predictors 𝑥, the response is Poisson distributed with a rate that depends on
the predictors.

The typical link function for Poisson regression is the logarithm: 𝑔(𝑡) = 𝑙𝑜𝑔(𝑡). This means that we assume 𝑦|𝑥 ∼
𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆(𝑥) = 𝑒𝑥′𝛽). Why is this a good choice? We again resort to the two-group case, encoded by 𝑥 = 1 and
𝑥 = 0, to understand this model: 𝜆(𝑥 = 1) = 𝑒𝛽0+𝛽1 = 𝑒𝛽0 𝑒𝛽1 = 𝜆(𝑥 = 0) 𝑒𝛽1 . We thus see that this link function
implies that a change in 𝑥 multiples the rate of events by 𝑒𝛽1 .

For our example5 we inspect the number of infected high-school kids, as a function of the days since an outbreak.
cases <-
structure(list(Days = c(1L, 2L, 3L, 3L, 4L, 4L, 4L, 6L, 7L, 8L,
8L, 8L, 8L, 12L, 14L, 15L, 17L, 17L, 17L, 18L, 19L, 19L, 20L,
23L, 23L, 23L, 24L, 24L, 25L, 26L, 27L, 28L, 29L, 34L, 36L, 36L,
42L, 42L, 43L, 43L, 44L, 44L, 44L, 44L, 45L, 46L, 48L, 48L, 49L,
49L, 53L, 53L, 53L, 54L, 55L, 56L, 56L, 58L, 60L, 63L, 65L, 67L,
67L, 68L, 71L, 71L, 72L, 72L, 72L, 73L, 74L, 74L, 74L, 75L, 75L,
80L, 81L, 81L, 81L, 81L, 88L, 88L, 90L, 93L, 93L, 94L, 95L, 95L,
95L, 96L, 96L, 97L, 98L, 100L, 101L, 102L, 103L, 104L, 105L,
106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L),

Students = c(6L, 8L, 12L, 9L, 3L, 3L, 11L, 5L, 7L, 3L, 8L,
4L, 6L, 8L, 3L, 6L, 3L, 2L, 2L, 6L, 3L, 7L, 7L, 2L, 2L, 8L,
3L, 6L, 5L, 7L, 6L, 4L, 4L, 3L, 3L, 5L, 3L, 3L, 3L, 5L, 3L,
5L, 6L, 3L, 3L, 3L, 3L, 2L, 3L, 1L, 3L, 3L, 5L, 4L, 4L, 3L,
5L, 4L, 3L, 5L, 3L, 4L, 2L, 3L, 3L, 1L, 3L, 2L, 5L, 4L, 3L,
0L, 3L, 3L, 4L, 0L, 3L, 3L, 4L, 0L, 2L, 2L, 1L, 1L, 2L, 0L,
2L, 1L, 1L, 0L, 0L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 0L, 0L,
0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L)), .Names = c("Days", "Students"

), class = "data.frame", row.names = c(NA, -109L))
attach(cases)
head(cases)

Days Students
1 1 6
2 2 8
3 3 12
4 3 9
5 4 3
6 4 3

Look at the following plot and think:

• Can we assume that the errors have constant variance?
• What is the sign of the effect of time on the number of sick students?
• Can we assume a linear effect of time?

plot(Days, Students, xlab = "DAYS", ylab = "STUDENTS", pch = 16)

5Taken from http://www.theanalysisfactor.com/generalized-linear-models-in-r-part-6-poisson-regression-count-variables/

87

http://www.theanalysisfactor.com/generalized-linear-models-in-r-part-6-poisson-regression-count-variables/

7.4. EXTENSIONS CHAPTER 7. GENERALIZED LINEAR MODELS

0 20 40 60 80 100

0
2

4
6

8
10

12

DAYS

S
T

U
D

E
N

T
S

We now fit a model to check for the change in the rate of events as a function of the days since the outbreak.
glm.3 <- glm(Students ~ Days, family = poisson)
summary(glm.3)

##
Call:
glm(formula = Students ~ Days, family = poisson)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.00482 -0.85719 -0.09331 0.63969 1.73696
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.990235 0.083935 23.71 <2e-16 ***
Days -0.017463 0.001727 -10.11 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for poisson family taken to be 1)
##
Null deviance: 215.36 on 108 degrees of freedom
Residual deviance: 101.17 on 107 degrees of freedom
AIC: 393.11
##
Number of Fisher Scoring iterations: 5

Things to note:

• We used family=poisson in the glm function to tell R that we assume a Poisson distribution.
• The coefficients table is there as usual. When interpreting the table, we need to recall that the effect, i.e. the ̂𝛽,

are multiplicative due to the assumed link function.
• Each day decreases the rate of events by a factor of about 𝑒𝛽1 = 0.98.
• For more information see ?glm and ?family.

7.4 Extensions
As we already implied, GLMs are a very wide class of models. We do not need to use the default link function,but
more importantly, we are not constrained to Binomial, or Poisson distributed response. For exponential, gamma, and
other response distributions, see ?glm or the references in the Bibliographic Notes section.

88

CHAPTER 7. GENERALIZED LINEAR MODELS 7.5. BIBLIOGRAPHIC NOTES

7.5 Bibliographic Notes
The ultimate reference on GLMs is McCullagh (1984). For a less technical exposition, we refer to the usual Venables
and Ripley (2013).

7.6 Practice Yourself
1. Try using lm for analyzing the plant growth data in weight.factor as a function of group in the PlantGrowth

data.

2. Generate some synthetic data for a logistic regression:

a. Generate two predictor variables of length 100. They can be random from your favorite distribution.
b. Fix beta<- c(-1,2), and generate the response with:rbinom(n=100,size=1,prob=exp(x %*%

beta)/(1+exp(x %*% beta))). Think: why is this the model implied by the logistic regression?
c. Fit a Logistic regression to your synthetic data using glm.
d. Are the estimated coefficients similar to the true ones you used?
e. What is the estimated probability of an event at x=1,1? Use predict.glm but make sure to read the

documentation on the type argument.

3. Read about the epil dataset using ? MASS::epil. Inspect the dependency of the number of seizures (𝑦) in the
age of the patient (age) and the treatment (trt).

1. Fit a Poisson regression with glm and family = "poisson".
2. Are the coefficients significant?

3. Does the treatment reduce the frequency of the seizures?
4. According to this model, what would be the number of seizures for 20 years old patient with progabide

treatment?

See DataCamp’s Generalized Linear Models in R6 for more self practice.

6https://www.datacamp.com/courses/generalized-linear-models-in-r

89

https://www.datacamp.com/courses/generalized-linear-models-in-r

7.6. PRACTICE YOURSELF CHAPTER 7. GENERALIZED LINEAR MODELS

90

Chapter 8

Linear Mixed Models

Example 8.1 (Dependent Samples on the Mean). Consider inference on a population’s mean. Supposdly, more
observations imply more infotmation. This, however, is not the case if samples are completely dependant. More
observations do not add any new information. From this example one may think that dependence reduces information.
This is a false intuitiont: negative correlations imply oscilations about the mean, so they are actually more informative
on the mean than independent observations.

Example 8.2 (Repeated Measures). Consider a prospective study, i.e., data that originates from selecting a set of
subjects and making measurements on them over time. Also assume that some subjects received some treatment, and
other did not. When we want to infer on the population from which these subjects have been sampled, we need to
recall that some series of observations came from the same subject. If we were to ignore the subject of origin, and
treat each observation as an independent sample point, we will think we have more information on treatment effects
than we actually do, i.e., we will have a false sense of security in our inference.

Sources of variability, i.e. noise, are known in the statistical literature as “random effects”. Specifying these sources
determines the correlation structure in our measurements. In the simplest linear models of Chapter 6, we thought of
the variability as originating from measurement error, thus independent of anything else. No-correlation, and fixed
variability is known as sphericity. Sphericity is of great mathematical convenience, but quite often, unrealistic.

The effects we want to infer on are assumingly non-random, and known “fixed-effects”. Sources of variability in our
measurements, known as “random-effects” are usually not the object of interest. A model which has both random-
effects, and fixed-effects, is known as a “mixed effects” model. If the model is also linear, it is known as a linear mixed
model (LMM). Here are some examples where LMMs arise.

Example 8.3 (Fixed and Random Machine Effect). Consider a problem from industrial process control: testing
for a change in diamteters of manufactured bottle caps. We want to study the fixed effect of time: before versus
after. Bottle caps are produced by several machines. Clearly there is variablity in the diameters within-machine
and between-machines. Given a sample of bottle caps from many machines, we could standardize measurements by
removing each machine’s average. This implies we treat machines as fixed effects, substract them, and consider within-
machine variability is the only source of variability. The substration of the machine effect, removed information on
between-machine variability.
Alternatively, we could consider between-machine variability as another source of uncertainty when inferring on the
temporal fixed effect. In which case, would not substract the machine-effect, bur rather, treat it as a random-effect,
in the LMM framework.

Example 8.4 (Fixed and Random Subject Effect). Consider an experimenal design where each subject is given 2
types of diets, and his health condition is recorded. We could standardize over subjects by removing the subject-wise
average, before comparing diets. This is what a paired (t-)test does. This also implies the within-subject variability
is the only source of variability we care about. Alternatively, for inference on the population of “all subjects” we need
to adress the between-subject variability, and not only the within-subject variability.

The unifying theme of the above examples, is that the variability in our data has several sources. Which are the sources
of variability that need to concern us? This is a delicate matter which depends on your goals. As a rule of thumb, we

91

8.1. PROBLEM SETUP CHAPTER 8. LINEAR MIXED MODELS

will suggest the following view: If information of an effect will be available at the time of prediction, treat
it as a fixed effect. If it is not, treat it as a random-effect.

LMMs are so fundamental, that they have earned many names:

• Mixed Effects: Because we may have both fixed effects we want to estimate and remove, and random effects
which contribute to the variability to infer against.

• Variance Components: Because as the examples show, variance has more than a single source (like in the
Linear Models of Chapter 6).

• Hirarchial Models: Because as Example 8.4 demonstrates, we can think of the sampling as hierarchical– first
sample a subject, and then sample its response.

• Multilevel Analysis: For the same reasons it is also known as Hierarchical Models.

• Repeated Measures: Because we make several measurements from each unit, like in Example 8.4.

• Longitudinal Data: Because we follow units over time, like in Example 8.4.

• Panel Data: Is the term typically used in econometric for such longitudinal data.

Whether we are aiming to infer on a generative model’s parameters, or to make predictions, there is no “right” nor
“wrong” approach. Instead, there is always some implied measure of error, and an algorithm may be good, or bad,
with respect to this measure (think of false and true positives, for instance). This is why we care about dependencies
in the data: ignoring the dependence structure will probably yield inefficient algorithms. Put differently, if we ignore
the statistical dependence in the data we will probably me making more errors than possible/optimal.

We now emphasize:

1. Like in previous chapters, by “model” we refer to the assumed generative distribution, i.e., the sampling distri-
bution.

2. In a LMMwe specify the dependence structure via the hierarchy in the sampling scheme E.g. caps within machine,
students within class, etc. Not all dependency models can be specified in this way! Dependency structures that
are not hierarchical include temporal dependencies (AR1, ARIMA2, ARCH3 and GARCH), spatial4, Markov
Chains5, and more. To specify dependency structures that are no hierarchical, see Chapter 8 in (the excellent)
Weiss (2005).

3. If you are using LMMs for predictions, and not for inference on the fixed effects or variance components, then
see the Supervised Learning Chapter 10. Also recall that machine learning from non-independent observations
(such as LMMs) is a delicate matter.

8.1 Problem Setup
We denote an outcome with 𝑦 and assume its sampling distribution is given by

𝑦|𝑥, 𝑢 = 𝑥′𝛽 + 𝑧′𝑢 + 𝜀 (8.1)

where 𝑥 are the factors with (fixed) effects we want to study, and𝛽 denotes these effects. The factors 𝑧, with effects 𝑢,
merely contribute to variability in 𝑦|𝑥.
In our repeated measures example (8.2) the treatment is a fixed effect, and the subject is a random effect. In our
bottle-caps example (8.3) the time (before vs. after) is a fixed effect, and the machines may be either a fixed or a
random effect (depending on the purpose of inference). In our diet example (8.4) the diet is the fixed effect and the
subject is a random effect.

Notice that we state 𝑦|𝑥, 𝑧 merely as a convenient way to do inference on 𝑦|𝑥. We could, instead, specify 𝑉 𝑎𝑟[𝑦|𝑥]
directly. The second approach seems less convinient. This is the power of LMMs! We specify the covariance not via
the matrix 𝑉 𝑎𝑟[𝑧′𝑢|𝑥], or 𝑉 𝑎𝑟[𝑦|𝑥], but rather via the sampling hierarchy.

1https://en.wikipedia.org/wiki/Autoregressive_model
2https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
3https://en.wikipedia.org/wiki/Autoregressive_conditional_heteroskedasticity
4https://en.wikipedia.org/wiki/Spatial_dependence
5https://en.wikipedia.org/wiki/Markov_chain

92

https://en.wikipedia.org/wiki/Autoregressive_model
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://en.wikipedia.org/wiki/Autoregressive_conditional_heteroskedasticity
https://en.wikipedia.org/wiki/Spatial_dependence
https://en.wikipedia.org/wiki/Markov_chain

CHAPTER 8. LINEAR MIXED MODELS 8.2. LMMS IN R

Given a sample of 𝑛 observations (𝑦𝑖, 𝑥𝑖, 𝑧𝑖) from model (8.1), we will want to estimate (𝛽, 𝑢). Under some assumption
on the distribution of 𝜀 and 𝑧, we can use maximum likelihood (ML). In the context of LMMs, however, ML is typically
replaced with restricted maximum likelihood (ReML), because it returns unbiased estimates of 𝑉 𝑎𝑟[𝑦|𝑥] and ML does
not.

8.1.1 Non-Linear Mixed Models
The idea of random-effects can also be extended to non-linear mean models. Formally, this means that 𝑦|𝑥, 𝑧 = 𝑓(𝑥, 𝑧, 𝜀)
for some non-linear 𝑓 . This is known as non-linear-mixed-models, which will not be discussed in this text.

8.1.2 Generalized Linear Mixed Models (GLMM)
You can marry the ideas of random effects, with non-linear link functions, and non-Gaussian distribution of the
response. These are known as Generalized Linear Mixed Models (GLMM), which will not be discussed in this text.

8.2 LMMs in R
We will fit LMMs with the lme4::lmer function. The lme4 is an excellent package, written by the mixed-models
Guru Douglas Bates6. We start with a small simulation demonstrating the importance of acknowledging your sources
of variability. Our demonstration consists of fitting a linear model that assumes independence, when data is clearly
dependent.
n.groups <- 4 # number of groups
n.repeats <- 2 # samples per group
groups <- rep(1:n.groups, each=n.repeats) %>% as.factor
n <- length(groups)
z0 <- rnorm(n.groups, 0, 10)
(z <- z0[as.numeric(groups)]) # generate and inspect random group effects

[1] 6.8635182 6.8635182 8.2853917 8.2853917 0.6861244 0.6861244
[7] -2.4415951 -2.4415951
epsilon <- rnorm(n,0,1) # generate measurement error

beta0 <- 2 # this is the actual parameter of interest! The global mean.

y <- beta0 + z + epsilon # sample from an LMM

We can now fit the linear and LMM.
fit a linear model assuming independence
lm.5 <- lm(y~1)

fit a mixed-model that deals with the group dependence
library(lme4)
lme.5 <- lmer(y~1|groups)

The summary of the linear model
summary.lm.5 <- summary(lm.5)
summary.lm.5

##
Call:
lm(formula = y ~ 1)
##
Residuals:
Min 1Q Median 3Q Max
-6.2932 -3.6148 0.5154 3.9928 5.1632

6http://www.stat.wisc.edu/~bates/

93

http://www.stat.wisc.edu/~bates/

8.2. LMMS IN R CHAPTER 8. LINEAR MIXED MODELS

##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.449 1.671 3.261 0.0138 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 4.726 on 7 degrees of freedom

The summary of the LMM
summary.lme.5 <- summary(lme.5)
summary.lme.5

Linear mixed model fit by REML ['lmerMod']
Formula: y ~ 1 | groups
##
REML criterion at convergence: 29.6
##
Scaled residuals:
Min 1Q Median 3Q Max
-1.08588 -0.61820 0.05879 0.53321 1.03325
##
Random effects:
Groups Name Variance Std.Dev.
groups (Intercept) 25.6432 5.0639
Residual 0.3509 0.5924
Number of obs: 8, groups: groups, 4
##
Fixed effects:
Estimate Std. Error t value
(Intercept) 5.449 2.541 2.145

Look at the standard error of the global mean, i.e., the intercept: for lm it is 1.671, and for lme it is 2.541. Why this
difference? Because lm treats the group effect as fixed, while the mixed model treats the group effect as a source of
noise/uncertainty. Inference using lm underestimates our uncertainty in the estimated population mean (𝛽0). This is
that false-sense of security we may have when ignoring correlations.

8.2.0.1 Relation to Paired t-test

Recall the paired t-test. Our two-sample–per-group example of the LMM is awfully similar to a pairted t-test. It
would be quite troubeling if the well-known t-test and the oh-so-powerful LMM would lead to diverging conclusions.
In the previous, we inferred on the global mean; a quantity that cancels out when pairing. For a fair comparison, let’s
infer on some temporal effect. Compare the t-statistic below, to the t value in the summary of lme.6. Luckily, as
we demonstrate, the paired t-test and the LMM are equivalent. So if you follow authors like Barr et al. (2013) that
recommend LMMs instead of pairing, remember, these things are sometimes equivalent.
time.fixed.effect <- rep(c('Before','After'), times=4) %>% factor
head(cbind(y,groups,time.fixed.effect))

y groups time.fixed.effect
[1,] 9.076626 1 2
[2,] 8.145687 1 1
[3,] 10.611710 2 2
[4,] 10.535547 2 1
[5,] 2.526772 3 2
[6,] 3.782050 3 1
lme.6 <- lmer(y~time.fixed.effect+(1|groups))

coef(summary(lme.6))

94

CHAPTER 8. LINEAR MIXED MODELS 8.2. LMMS IN R

Estimate Std. Error t value
(Intercept) 5.5544195 2.5513561 2.1770460
time.fixed.effectBefore -0.2118132 0.4679384 -0.4526518
t.test(y~time.fixed.effect, paired=TRUE)$statistic

t
0.4526514

8.2.1 A Single Random Effect
We will use the Dyestuff data from the lme4 package, which encodes the yield, in grams, of a coloring solution
(dyestuff), produced in 6 batches using 5 different preparations.
data(Dyestuff, package='lme4')
attach(Dyestuff)
head(Dyestuff)

Batch Yield
1 A 1545
2 A 1440
3 A 1440
4 A 1520
5 A 1580
6 B 1540

And visually
lattice::dotplot(Yield~Batch)

Y
ie

ld

1450

1500

1550

1600

A B C D E F

The plot confirms that Yield varies between Batchs. We do not want to study this batch effect, but we want our
inference to apply to new, unseen, batches7. We thus need to account for the two sources of variability when infering
on the (global) mean: the within-batch variability, and the between-batch variability We thus fit a mixed model, with
an intercept and random batch effect.
lme.1<- lmer(Yield ~ 1 + (1|Batch) , Dyestuff)
summary(lme.1)

Linear mixed model fit by REML ['lmerMod']
Formula: Yield ~ 1 + (1 | Batch)
Data: Dyestuff
##
REML criterion at convergence: 319.7
##

7Think: why bother treating the Batch effect as noise? Should we now just substract Batch effects? This is not a trick question.

95

8.2. LMMS IN R CHAPTER 8. LINEAR MIXED MODELS

Scaled residuals:
Min 1Q Median 3Q Max
-1.4117 -0.7634 0.1418 0.7792 1.8296
##
Random effects:
Groups Name Variance Std.Dev.
Batch (Intercept) 1764 42.00
Residual 2451 49.51
Number of obs: 30, groups: Batch, 6
##
Fixed effects:
Estimate Std. Error t value
(Intercept) 1527.50 19.38 78.8

Things to note:

• The syntax Yield ~ (1|Batch) tells lme4::lmer to fit a model with a global intercept (1) and a random Batch
effect (1|Batch). The | operator is the cornerstone of random effect modelng with lme4::lmer.

• 1+ isn’t really needed. lme4::lmer, like stats::lm adds it be default. We put it there to remind you it is
implied.

• As usual, summary is content aware and has a different behavior for lme class objects.
• The output distinguishes between random effects (𝑢), a source of variability, and fixed effect (𝛽), which we want

to study. The mean of the random effect is not reported because it is unassumingly 0.
• Were we not interested in standard errors, lm(Yield ~ Batch) would have returned the same (fixed) effects

estimates.

Some utility functions let us query the lme object. The function coef will work, but will return a cumbersome output.
Better use fixef to extract the fixed effects, and ranef to extract the random effects. The model matrix (of the fixed
effects alone), can be extracted with model.matrix, and predictions with predict.

8.2.2 A Full Mixed-Model
In the sleepstudy data, we recorded the reaction times to a series of tests (Reaction), after various subject (Subject)
underwent various amounts of sleep deprivation (Day).

Days of sleep deprivation

A
ve

ra
ge

 r
ea

ct
io

n
tim

e
(m

s)

200
300
400

0 2 4 6 8

310 309

0 2 4 6 8

370 349

0 2 4 6 8

350

334 308 371 369

200
300
400

351
200
300
400

335 332 372 333 352

331

0 2 4 6 8

330

200
300
400

337

We now want to estimate the (fixed) effect of the days of sleep deprivation on response time, while allowing each
subject to have his/hers own effect. Put differently, we want to estimate a random slope for the effect of day. The
fixed Days effect can be thought of as the average slope over subjects.
lme.3 <- lmer (Reaction ~ Days + (Days | Subject) , data= sleepstudy)

Things to note:

• ~Days specifies the fixed effect.

96

CHAPTER 8. LINEAR MIXED MODELS 8.2. LMMS IN R

• We used the (Days|Subject) syntax to tell lme4::lmer we want to fit the model ~Days within each subject.
Just like when modeling with stats::lm, (Days|Subject) is interpreted as (1+Days|Subject), so we get a
random intercept and slope, per subject.

• Were we not interested in standard erors, stats::lm(Reaction~Days*Subject) would have returned (alomst)
the same effects. Why “almost”? See below…

The fixed day effect is:
fixef(lme.3)

(Intercept) Days
251.40510 10.46729

The variability in the average response (intercept) and day effect is
ranef(lme.3) %>% lapply(head)

$Subject
(Intercept) Days
308 2.257533 9.1992737
309 -40.394272 -8.6205161
310 -38.956354 -5.4495796
330 23.688870 -4.8141448
331 22.258541 -3.0696766
332 9.038763 -0.2720535

Did we really need the whole lme machinery to fit a within-subject linear regression and then average over subjects?
The short answer is that if we have a enough data for fitting each subject with it’s own lm, we don’t need lme. The
longer answer is that the assumptions on the distribution of random effect, namely, that they are normally distributed,
allow us to pool information from one subject to another. In the words of John Tukey: “we borrow strength over
subjects”. If the normality assumption is true, this is very good news. If, on the other hand, you have a lot of samples
per subject, and you don’t need to “borrow strength” from one subject to another, you can simply fit within-subject
linear models without the mixed-models machinery. This will avoid any assumptions on the distribution of effects over
subjects. For a full discussion of the pro’s and con’s of hirarchial mixed models, consult our Bibliographic Notes.

To demonstrate the “strength borrowing”, here is a comparison of the lme, versus the effects of fitting a linear model
to each subject separately.

Days

(I
nt

er
ce

pt
)

200

220

240

260

280

0 5 10 15 20

308

309 310

334

349

350

370

330
331

332

333

335

337

351

352

369371

372

Mixed model Within−group Population

Here is a comparison of the random-day effect from lme versus a subject-wise linear model. They are not the same.

97

8.3. SERIAL CORRELATIONS IN SPACE/TIME CHAPTER 8. LINEAR MIXED MODELS

Days of sleep deprivation

A
ve

ra
ge

 r
ea

ct
io

n
tim

e
(m

s)

200
250
300
350
400
450

02468

310 309

02468

370 349

02468

350 334

02468

308 371

02468

369

351

02468

335 332

02468

372 333

02468

352 331

02468

330

200
250
300
350
400
450

337

Within−subject Mixed model Population

8.2.3 Sparsity and Memory Efficiency
In Chapter 14 we discuss how to efficienty represent matrices in memory. At this point we can already hint that the
covariance matrices implied by LMMs are sparse. This fact is exploited in the lme4 package, making it very efficient
computationally.

8.3 Serial Correlations in Space/Time
As previously stated, a hierarchical model of the type 𝑦 = 𝑥′𝛽+𝑧′𝑢+𝜖 is a very convenient way to state the correlations
of 𝑦|𝑥 instead of specifying the matrix 𝑉 𝑎𝑟[𝑧′𝑢 + 𝜖|𝑥] for various 𝑥 and 𝑧. The hierarchical sampling scheme implies
correlations in blocks. What if correlations do not have a block structure? Temporal data or spatial data, for instance,
tend to present correlations that decay smoothly in time/space. These correlations cannot be represented via a
hirarchial sampling scheme.

One way to go about, is to find a dedicated package for space/time data. For instance, in the Spatio-Temporal Data8

task view, or the Ecological and Environmental9 task view.

Instead, we will show how to solve this matter using the nlme package. This is because nlme allows to compond the
blocks of covariance of LMMs, with the smoothly decaying covariances of space/time models.

We now use an example from the help of nlme::corAR1. The nlme::Ovary data is panel data of number of ovarian
follicles in different mares (female horse), at various times.
We fit a model with a random Mare effect, and correlations that decay geometrically in time. In the time-series
literature, this is known as an auto-regression of order 1 model, or AR(1), in short.
library(nlme)
head(nlme::Ovary)

Grouped Data: follicles ~ Time | Mare
Mare Time follicles
1 1 -0.13636360 20
2 1 -0.09090910 15
3 1 -0.04545455 19
4 1 0.00000000 16
5 1 0.04545455 13
6 1 0.09090910 10
fm1Ovar.lme <- nlme::lme(fixed=follicles ~ sin(2*pi*Time) + cos(2*pi*Time),

data = Ovary,
random = pdDiag(~sin(2*pi*Time)),
correlation=corAR1())

summary(fm1Ovar.lme)

8https://cran.r-project.org/web/views/SpatioTemporal.html
9https://cran.r-project.org/web/views/Environmetrics.html

98

https://cran.r-project.org/web/views/SpatioTemporal.html
https://cran.r-project.org/web/views/Environmetrics.html

CHAPTER 8. LINEAR MIXED MODELS 8.3. SERIAL CORRELATIONS IN SPACE/TIME

Linear mixed-effects model fit by REML
Data: Ovary
AIC BIC logLik
1563.448 1589.49 -774.724
##
Random effects:
Formula: ~sin(2 * pi * Time) | Mare
Structure: Diagonal
(Intercept) sin(2 * pi * Time) Residual
StdDev: 2.858385 1.257977 3.507053
##
Correlation Structure: AR(1)
Formula: ~1 | Mare
Parameter estimate(s):
Phi
0.5721866
Fixed effects: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)
Value Std.Error DF t-value p-value
(Intercept) 12.188089 0.9436602 295 12.915760 0.0000
sin(2 * pi * Time) -2.985297 0.6055968 295 -4.929513 0.0000
cos(2 * pi * Time) -0.877762 0.4777821 295 -1.837159 0.0672
Correlation:
(Intr) s(*p*T
sin(2 * pi * Time) 0.000
cos(2 * pi * Time) -0.123 0.000
##
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.34910093 -0.58969626 -0.04577893 0.52931186 3.37167486
##
Number of Observations: 308
Number of Groups: 11

Things to note:

• The fitting is done with the nlme::lme function, and not lme4::lmer.
• sin(2*pi*Time) + cos(2*pi*Time) is a fixed effect that captures seasonality.
• The temporal covariance, is specified using the correlations= argument.
• AR(1) was assumed by calling correlation=corAR1(). See nlme::corClasses for a list of supported correlation

structures.
• From the summary, we see that a Mare random effect has also been added. Where is it specified? It is implied

by the random= argument. Read ?lme for further details.

We can now inspect the contrivance implied by our model’s specification. As expected, we see the blocks of non-
null covariance within Mare, but unlike “vanilla” LMMs, the covariance within mare is not fixed. Rather, it decays
geometrically with time.

99

8.4. EXTENSIONS CHAPTER 8. LINEAR MIXED MODELS

row

co
lu

m
n

20

40

60

80

100

20 40 60 80 100

0

5

10

15

20

8.4 Extensions
8.4.1 Cluster Robust Standard Errors
As previously stated, random effects are nothing more than a convenient way to specify covariances within a level of
a random effect, i.e., within a group/cluster. This is also the motivation underlying cluster robust inference, which is
immensely popular with econometricians, but less so elsewhere. With cluster robust inference, we assume a model of
type 𝑦 = 𝑓(𝑥) + 𝜀; unlike LMMs we assume indpenedence (conditonal on 𝑥), but we allow 𝜀 within clusters defined by
𝑥. For a longer comparison between the two approaches, see Michael Clarck’s guide10.

8.4.2 Linear Models for Panel Data
nlme and lme4 will probably provide you with all the functionality you need for panel data. If, however, you are
trained as an econometrician, and prefer the econometric parlance, then the plm11 and panelr12 packages for panel linear
models, are just for you. In particular, they allow for cluster-robust covariance estimates, and Durbin–Wu–Hausman
test for random effects. The plm package vignette13 also has an interesting comparison to the nlme package.

8.4.3 Testing Hypotheses on Correlations
After working so hard to model the correlations in observation, we may want to test if it was all required. Douglas
Bates, the author of nlme and lme4 wrote a famous cautionary note, found here14, on hypothesis testing in mixed
models, in particular hypotheses on variance components. Many practitioners, however, did not adopt Doug’s view.
Many of the popular tests, particularly the ones in the econometric literature, can be found in the plm package (see
Section 6 in the package vignette15). These include tests for poolability, Hausman test, tests for serial correlations,
tests for cross-sectional dependence, and unit root tests.

8.5 Bibliographic Notes
Most of the examples in this chapter are from the documentation of the lme4 package (Bates et al., 2015). For a
general and very applied treatment, see Pinero and Bates (2000). As usual, a hands on view can be found in Venables
and Ripley (2013), and also in an excellent blog post by Kristoffer Magnusson16 For a more theoretical view see Weiss
(2005) or Searle et al. (2009). Sometimes it is unclear if an effect is random or fixed; on the difference between the two

10https://m-clark.github.io/docs/clustered/
11https://cran.r-project.org/package=plm
12https://www.jacob-long.com/post/panelr-intro/
13https://cran.r-project.org/web/packages/plm/vignettes/plm.pdf
14https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html
15https://cran.r-project.org/web/packages/plm/vignettes/plm.pdf
16http://rpsychologist.com/r-guide-longitudinal-lme-lmer

100

https://m-clark.github.io/docs/clustered/
https://cran.r-project.org/package=plm
https://www.jacob-long.com/post/panelr-intro/
https://cran.r-project.org/web/packages/plm/vignettes/plm.pdf
https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html
https://cran.r-project.org/web/packages/plm/vignettes/plm.pdf
http://rpsychologist.com/r-guide-longitudinal-lme-lmer

CHAPTER 8. LINEAR MIXED MODELS 8.6. PRACTICE YOURSELF

types of inference see the classics: Eisenhart (1947), Kempthorne (1975), and the more recent Rosset and Tibshirani
(2018). For an interactive, beatiful visualization of the shrinkage introduced by mixed models, see Michael Clark’s
blog17. For more on predictions in linear mixed models see Robinson (1991), Rabinowicz and Rosset (2018), and
references therein. See Michael Clarck’s18 guide for various ways of dealing with correlations within groups. For the
geo-spatial view and terminology of correlated data, see Christakos (2000), Diggle et al. (1998), Allard (2013), and
Cressie and Wikle (2015).

8.6 Practice Yourself
1. Computing the variance of the sample mean given dependent correlations. How does it depend on the covariance

between observations? When is the sample most informative on the population mean?

2. Think: when is a paired t-test not equivalent to an LMM with two measurements per group?

3. Return to the Penicillin data set. Instead of fitting an LME model, fit an LM model with lm. I.e., treat all
random effects as fixed.

a. Compare the effect estimates.
b. Compare the standard errors.
c. Compare the predictions of the two models.

4. [Very Advanced!] Return to the Penicillin data and use the gls function to fit a generalized linear model,
equivalent to the LME model in our text.

5. Read about the “oats” dataset using ? MASS::oats.Inspect the dependency of the yield (Y) in the Varieties (V)
and the Nitrogen treatment (N).

1. Fit a linear model, does the effect of the treatment significant? The interaction between the Varieties and
Nitrogen is significant?

2. An expert told you that could be a variance between the different blocks (B) which can bias the analysis.
fit a LMM for the data.

3. Do you think the blocks should be taken into account as “random effect” or “fixed effect”?

6. Return to the temporal correlation in Section 8.3, and replace the AR(1) covariance, with an ARMA covariance.
Visualize the data’s covariance matrix, and compare the fitted values.

See DataCamps’ Hierarchical and Mixed Effects Models19 for more self practice.

17http://m-clark.github.io/posts/2019-05-14-shrinkage-in-mixed-models/
18https://m-clark.github.io/docs/clustered/
19https://www.datacamp.com/courses/hierarchical-and-mixed-effects-models

101

http://m-clark.github.io/posts/2019-05-14-shrinkage-in-mixed-models/
https://m-clark.github.io/docs/clustered/
https://www.datacamp.com/courses/hierarchical-and-mixed-effects-models

8.6. PRACTICE YOURSELF CHAPTER 8. LINEAR MIXED MODELS

102

Chapter 9

Multivariate Data Analysis

The term “multivariate data analysis” is so broad and so overloaded, that we start by clarifying what is discussed
and what is not discussed in this chapter. Broadly speaking, we will discuss statistical inference, and leave more
“exploratory flavored” matters like clustering, and visualization, to the Unsupervised Learning Chapter 11.

We start with an example.

Example 9.1. Consider the problem of a patient monitored in the intensive care unit. At every minute the monitor
takes 𝑝 physiological measurements: blood pressure, body temperature, etc. The total number of minutes in our data
is 𝑛, so that in total, we have 𝑛 × 𝑝 measurements, arranged in a matrix. We also know the typical 𝑝-vector of typical
measurements for this patient when healthy, denoted 𝜇0.

Formally, let 𝑦 be single (random) measurement of a 𝑝-variate random vector. Denote 𝜇 ∶= 𝐸[𝑦]. Here is the set of
problems we will discuss, in order of their statistical difficulty.

• Signal Detection: a.k.a. multivariate test, or global test, or omnibus test. Where we test whether 𝜇 differs than
some 𝜇0.

• Signal Counting: a.k.a. prevalence estimation, or 𝜋0 estimation. Where we count the number of entries in 𝜇
that differ from 𝜇0.

• Signal Identification: a.k.a. selection, or multiple testing. Where we infer which of the entries in 𝜇 differ from
𝜇0. In the ANOVA literature, this is known as a post-hoc analysis, which follows an omnibus test.

• Estimation: Estimating the magnitudes of entries in 𝜇, and their departure from 𝜇0. If estimation follows a
signal detection or signal identification stage, this is known as selective estimation.

Example 9.2. Consider the problem of detecting regions of cognitive function in the brain using fMRI. Each mea-
surement is the activation level at each location in a brain’s region. If the region has a cognitive function, the mean
activation differs than 𝜇0 = 0 when the region is evoked.

Example 9.3. Consider the problem of detecting cancer encoding regions in the genome. Each measurement is the
vector of the genetic configuration of an individual. A cancer encoding region will have a different (multivariate)
distribution between sick and healthy. In particular, 𝜇 of sick will differ from 𝜇 of healthy.

Example 9.4. Consider the problem of the simplest multiple regression. The estimated coefficient, ̂𝛽 are a random
vector. Regression theory tells us that its covariance is 𝑉 𝑎𝑟[̂𝛽|𝑋] = (𝑋′𝑋)−1𝜎2, and null mean of 𝛽. We thus see that
inference on the vector of regression coefficients, is nothing more than a multivaraite inference problem.

9.1 Signal Detection
Signal detection deals with the detection of the departure of 𝜇 from some 𝜇0, and especially, 𝜇0 = 0. This problem
can be thought of as the multivariate counterpart of the univariate hypothesis t-test.

103

9.1. SIGNAL DETECTION CHAPTER 9. MULTIVARIATE DATA ANALYSIS

9.1.1 Hotelling’s T2 Test
The most fundamental approach to signal detection is a mere generalization of the t-test, known as Hotelling’s 𝑇 2 test.

Recall the univariate t-statistic of a data vector 𝑥 of length 𝑛:

𝑡2(𝑥) ∶= (̄𝑥 − 𝜇0)2

𝑉 𝑎𝑟[̄𝑥] = (̄𝑥 − 𝜇0)𝑉 𝑎𝑟[̄𝑥]−1(̄𝑥 − 𝜇0), (9.1)

where 𝑉 𝑎𝑟[̄𝑥] = 𝑆2(𝑥)/𝑛, and 𝑆2(𝑥) is the unbiased variance estimator 𝑆2(𝑥) ∶= (𝑛 − 1)−1 ∑(𝑥𝑖 − ̄𝑥)2.

Generalizing Eq(9.1) to the multivariate case: 𝜇0 is a 𝑝-vector, ̄𝑥 is a 𝑝-vector, and 𝑉 𝑎𝑟[̄𝑥] is a 𝑝 × 𝑝 matrix of the
covariance between the 𝑝 coordinated of ̄𝑥. When operating with vectors, the squaring becomes a quadratic form, and
the division becomes a matrix inverse. We thus have

𝑇 2(𝑥) ∶= (̄𝑥 − 𝜇0)′𝑉 𝑎𝑟[̄𝑥]−1(̄𝑥 − 𝜇0), (9.2)

which is the definition of Hotelling’s 𝑇 2 one-sample test statistic. We typically denote the covariance between coordi-
nates in 𝑥 with Σ̂(𝑥), so that Σ̂𝑘,𝑙 ∶= 𝐶𝑜𝑣[𝑥𝑘, 𝑥𝑙] = (𝑛 − 1)−1 ∑(𝑥𝑘,𝑖 − ̄𝑥𝑘)(𝑥𝑙,𝑖 − ̄𝑥𝑙). Using the Σ notation, Eq.(9.2)
becomes

𝑇 2(𝑥) ∶= 𝑛(̄𝑥 − 𝜇0)′Σ̂(𝑥)−1(̄𝑥 − 𝜇0), (9.3)

which is the standard notation of Hotelling’s test statistic.

For inference, we need the null distribution of Hotelling’s test statistic. For this we introduce some vocabulary1:

1. Low Dimension: We call a problem low dimensional if 𝑛 ≫ 𝑝, i.e. 𝑝/𝑛 ≈ 0. This means there are many
observations per estimated parameter.

2. High Dimension: We call a problem high dimensional if 𝑝/𝑛 → 𝑐, where 𝑐 ∈ (0, 1). This means there are more
observations than parameters, but not many.

3. Very High Dimension: We call a problem very high dimensional if 𝑝/𝑛 → 𝑐, where 1 < 𝑐 < ∞. This means
there are less observations than parameters.

Hotelling’s 𝑇 2 test can only be used in the low dimensional regime. For some intuition on this statement, think of
taking 𝑛 = 20 measurements of 𝑝 = 100 physiological variables. We seemingly have 20 observations, but there are
100 unknown quantities in 𝜇. Say you decide that 𝜇 differs from 𝜇0 based on the coordinate with maximal difference
between your data and 𝜇0. Do you know how much variability to expect of this maximum? Try comparing your
intuition with a quick simulation. Did the variabilty of the maximum surprise you? Hotelling’s 𝑇 2 is not the same as
the maxiumum, but the same intuition applies. This criticism is formalized in Bai and Saranadasa (1996). In modern
applications, Hotelling’s 𝑇 2 is rarely recommended. Luckily, many modern alternatives are available. See Rosenblatt
et al. (2016) for a review.

9.1.2 Various Types of Signal to Detect
In the previous, we assumed that the signal is a departure of 𝜇 from some 𝜇0. For vactor-valued data 𝑦, that is
distributed ℱ, we may define “signal” as any departure from some ℱ0. This is the multivaraite counterpart of
goodness-of-fit (GOF) tests.

Even when restricting “signal” to departures of 𝜇 from 𝜇0, “signal” may come in various forms:

1. Dense Signal: when the departure is in a large number of coordinates of 𝜇.
2. Sparse Signal: when the departure is in a small number of coordinates of 𝜇.

Process control in a manufactoring plant, for instance, is consistent with a dense signal: if a manufacturing process
has failed, we expect a change in many measurements (i.e. coordinates of 𝜇). Detection of activation in brain imaging
is consistent with a dense signal: if a region encodes cognitive function, we expect a change in many brain locations
(i.e. coordinates of 𝜇.) Detection of disease encodig regions in the genome is consistent with a sparse signal: if
susceptibility of disease is genetic, only a small subset of locations in the genome will encode it.

Hotelling’s 𝑇 2 statistic is best for dense signal. The next test, is a simple (and forgotten) test best with sparse signal.
1This vocabulary is not standard in the literature, so when you read a text, you will need to verify yourself what the author means.

104

CHAPTER 9. MULTIVARIATE DATA ANALYSIS 9.1. SIGNAL DETECTION

9.1.3 Simes’ Test
Hotelling’s 𝑇 2 statistic has currently two limitations: It is designed for dense signals, and it requires estimating the
covariance, which is a very difficult problem.

An algorithm, that is sensitive to sparse signal and allows statistically valid detection under a wide range of covariances
(even if we don’t know the covariance) is known as Simes’ Test. The statistic is defined vie the following algorithm:

1. Compute 𝑝 variable-wise p-values: 𝑝1, … , 𝑝𝑗.
2. Denote 𝑝(1), … , 𝑝(𝑗) the sorted p-values.
3. Simes’ statistic is 𝑝𝑆𝑖𝑚𝑒𝑠 ∶= 𝑚𝑖𝑛𝑗{𝑝(𝑗) × 𝑝/𝑗}.
4. Reject the “no signal” null hypothesis at significance 𝛼 if 𝑝𝑆𝑖𝑚𝑒𝑠 < 𝛼.

9.1.4 Signal Detection with R
We start with simulating some data with no signal. We will convince ourselves that Hotelling’s and Simes’ tests detect
nothing, when nothing is present. We will then generate new data, after injecting some signal, i.e., making 𝜇 depart
from 𝜇0 = 0. We then convince ourselves, that both Hotelling’s and Simes’ tests, are indeed capable of detecting
signal, when present.

Generating null data:
library(mvtnorm)
n <- 100 # observations
p <- 18 # parameter dimension
mu <- rep(0,p) # no signal: mu=0
x <- rmvnorm(n = n, mean = mu)
dim(x)

[1] 100 18
lattice::levelplot(x) # just looking at white noise.

row

co
lu

m
n

5
10
15

20 40 60 80

−4
−2
0
2

Now making our own Hotelling one-sample 𝑇 2 test using Eq.((9.2)).
hotellingOneSample <- function(x, mu0=rep(0,ncol(x))){
n <- nrow(x)
p <- ncol(x)
stopifnot(n > 5* p)
bar.x <- colMeans(x)
Sigma <- var(x)
Sigma.inv <- solve(Sigma)
T2 <- n * (bar.x-mu0) %*% Sigma.inv %*% (bar.x-mu0)
p.value <- pchisq(q = T2, df = p, lower.tail = FALSE)
return(list(statistic=T2, pvalue=p.value))

}
hotellingOneSample(x)

$statistic
[,1]
[1,] 24.84187
##
$pvalue
[,1]
[1,] 0.1293344

105

9.1. SIGNAL DETECTION CHAPTER 9. MULTIVARIATE DATA ANALYSIS

Things to note:

• stopifnot(n > 5 * p) is a little verification to check that the problem is indeed low dimensional. Otherwise,
the 𝜒2 approximation cannot be trusted.

• solve returns a matrix inverse.
• %*% is the matrix product operator (see also crossprod()).
• A function may return only a single object, so we wrap the statistic and its p-value in a list object.

Just for verification, we compare our home made Hotelling’s test, to the implementation in the rrcov package. The
statistic is clearly OK, but our 𝜒2 approximation of the distribution leaves room to desire. Personally, I would never
trust a Hotelling test if 𝑛 is not much greater than 𝑝, in which case the high-dimensional-statistics literature is worth
consulting.
rrcov::T2.test(x)

##
One-sample Hotelling test
##
data: x
T2 = 24.8419, F = 1.1431, df1 = 18, df2 = 82, p-value = 0.3282
alternative hypothesis: true mean vector is not equal to (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)'
##
sample estimates:
[,1] [,2] [,3] [,4] [,5]
mean x-vector -0.07290116 0.04028668 0.2203469 0.01712441 -0.0358492
[,6] [,7] [,8] [,9] [,10]
mean x-vector -0.04320694 -0.02833064 -0.08167407 -0.07292739 0.04349341
[,11] [,12] [,13] [,14] [,15]
mean x-vector 0.2511244 -0.01768377 0.01338767 -0.08521308 -0.04517903
[,16] [,17] [,18]
mean x-vector 0.0683442 -0.1694372 0.003240262

Now write our own Simes’ test, and verify that it indeed does not find signal that is not there.
Simes <- function(x){
p.vals <- apply(x, 2, function(z) t.test(z)$p.value) # Compute variable-wise pvalues
p <- ncol(x)
p.Simes <- p * min(sort(p.vals)/seq_along(p.vals)) # Compute the Simes statistic
return(c(pvalue=p.Simes))

}
Simes(x)

pvalue
0.1412745

And now we verify that both tests can indeed detect signal when present. Are p-values small enough to reject the “no
signal” null hypothesis?
mu <- rep(x = 10/p,times=p) # inject signal
x <- rmvnorm(n = n, mean = mu)
hotellingOneSample(x)

$statistic
[,1]
[1,] 820.355
##
$pvalue
[,1]
[1,] 1.475586e-162
Simes(x)

pvalue

106

CHAPTER 9. MULTIVARIATE DATA ANALYSIS 9.2. SIGNAL COUNTING

1.297269e-09

… yes. All p-values are very small, so that all statistics can detect the non-null distribution.

9.2 Signal Counting
There are many ways to approach the signal counting problem. For the purposes of this book, however, we will not
discuss them directly, and solve the signal counting problem via the solution to a signal identification problem. The
rational is the following: if we know where 𝜇 departs from 𝜇0, we only need to count coordinates to solve the signal
counting problem.

We now make the previous arguent a little more accurate. Assume you have a selection/identification algorithm, that
selects coordinates in 𝜇. Denote with 𝑅(𝛼) the number of selected coordiantes, where 𝛼 is the coordinate-wise false
positive rate. Then 𝑅(𝛼) includes approximately 𝛼𝑝 false positives. Denote by 𝑝0 the number of coordiantes that do
not carry signal. Then 𝑝0 ≈ 𝑝 − (𝑅(𝛼) − 𝑝0(𝛼)). Equating these two equations we have

̂𝑝0 = 𝑝 − 𝑅(𝛼)
1 − 𝛼

. The number of coordinates in 𝜇 that truly carry signal is thus approximately 𝑝 − ̂𝑝0.

9.3 Signal Identification
The problem of signal identification is also known as selective testing, or more commonly as multiple testing.

In the ANOVA literature, an identification stage will typically follow a detection stage. These are known as the
omnibus F test, and post-hoc tests, respectively. In the multiple testing literature there will typically be no preliminary
detection stage. It is typically assumed that signal is present, and the only question is “where?”

The first question when approaching a multiple testing problem is “what is an error”? Is an error declaring a coordinate
in 𝜇 to be different than 𝜇0 when it is actually not? Is an error an overly high proportion of falsely identified coordinates?
The former is known as the family wise error rate (FWER), and the latter as the false discovery rate (FDR).

Remark. These types of errors have many names in many communities. See the Wikipedia entry on ROC2 for a table
of the (endless) possible error measures.

9.3.1 Signal Identification in R
One (of many) ways to do signal identification involves the stats::p.adjust function. The function takes as inputs
a 𝑝-vector of the variable-wise p-values. Why do we start with variable-wise p-values, and not the full data set?

a. Because we want to make inference variable-wise, so it is natural to start with variable-wise statistics.
b. Because we want to avoid dealing with covariances if possible. Computing variable-wise p-values does not require

estimating covariances.
c. So that the identification problem is decoupled from the variable-wise inference problem, and may be applied

much more generally than in the setup we presented.

We start be generating some high-dimensional multivariate data and computing the coordinate-wise (i.e. hypothesis-
wise) p-value.
library(mvtnorm)
n <- 1e1
p <- 1e2
mu <- rep(0,p)
x <- rmvnorm(n = n, mean = mu)
dim(x)

[1] 10 100

2https://en.wikipedia.org/wiki/Receiver_operating_characteristic

107

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

9.3. SIGNAL IDENTIFICATION CHAPTER 9. MULTIVARIATE DATA ANALYSIS

lattice::levelplot(x)

row

co
lu

m
n

20

40

60

80

2 6

−3

−2

−1

0

1

2

3

4

We now compute the pvalues of each coordinate. We use a coordinate-wise t-test. Why a t-test? Because for the
purpose of demonstration we want a simple test. In reality, you may use any test that returns valid p-values.
t.pval <- function(y) t.test(y)$p.value
p.values <- apply(X = x, MARGIN = 2, FUN = t.pval)
plot(p.values, type='h')

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

p.
va

lu
es

Things to note:

• t.pval is a function that merely returns the p-value of a t.test.
• We used the apply function to apply the same function to each column of x.
• MARGIN=2 tells apply to compute over columns and not rows.
• The output, p.values, is a vector of 100 p-values.

We are now ready to do the identification, i.e., find which coordinate of 𝜇 is different than 𝜇0 = 0. The workflow for
identification has the same structure, regardless of the desired error guarantees:

1. Compute an adjusted p-value.
2. Compare the adjusted p-value to the desired error level.

If we want 𝐹𝑊𝐸𝑅 ≤ 0.05, meaning that we allow a 5% probability of making any mistake, we will use the
method="holm" argument of p.adjust.

108

CHAPTER 9. MULTIVARIATE DATA ANALYSIS 9.4. SIGNAL ESTIMATION (*)

alpha <- 0.05
p.values.holm <- p.adjust(p.values, method = 'holm')
which(p.values.holm < alpha)

integer(0)

If we want 𝐹𝐷𝑅 ≤ 0.05, meaning that we allow the proportion of false discoveries to be no larger than 5%, we use the
method="BH" argument of p.adjust.
alpha <- 0.05
p.values.BH <- p.adjust(p.values, method = 'BH')
which(p.values.BH < alpha)

integer(0)

We now inject some strong signal in 𝜇 just to see that the process works. We will artificially inject signal in the first
10 coordinates.
mu[1:10] <- 2 # inject signal in first 10 variables
x <- rmvnorm(n = n, mean = mu) # generate data
p.values <- apply(X = x, MARGIN = 2, FUN = t.pval)
p.values.BH <- p.adjust(p.values, method = 'BH')
which(p.values.BH < alpha)

[1] 1 2 3 4 5 6 7 8 9 10

Indeed- we are now able to detect that the first coordinates carry signal, because their respective coordinate-wise null
hypotheses have been rejected.

9.4 Signal Estimation (*)
The estimation of the elements of 𝜇 is a seemingly straightforward task. This is not the case, however, if we estimate
only the elements that were selected because they were significant (or any other data-dependent criterion). Clearly,
estimating only significant entries will introduce a bias in the estimation. In the statistical literature, this is known
as selection bias. Selection bias also occurs when you perform inference on regression coefficients after some model
selection, say, with a lasso, or a forward search3.

Selective inference is a complicated and active research topic so we will not offer any off-the-shelf solution to the
matter. The curious reader is invited to read Rosenblatt and Benjamini (2014), Javanmard and Montanari (2014), or
Will Fithian’s4 PhD thesis (Fithian, 2015) for more on the topic.

9.5 Bibliographic Notes
For a general introduction to multivariate data analysis see Anderson-Cook (2004). For an R oriented introduction,
see Everitt and Hothorn (2011). For more on the difficulties with high dimensional problems, see Bai and Saranadasa
(1996). For some cutting edge solutions for testing in high-dimension, see Rosenblatt et al. (2016) and references
therein. Simes’ test is not very well known. It is introduced in Simes (1986), and proven to control the type I error
of detection under a PRDS type of dependence in Benjamini and Yekutieli (2001). For more on multiple testing, and
signal identification, see Efron (2012). For more on the choice of your error rate see Rosenblatt (2013). For an excellent
review on graphical models see Kalisch and Bühlmann (2014). Everything you need on graphical models, Bayesian
belief networks, and structure learning in R, is collected in the Task View5.

9.6 Practice Yourself
1. Generate multivariate data with:

3You might find this shocking, but it does mean that you cannot trust the summary table of a model that was selected from a multitude
of models.

4http://www.stat.berkeley.edu/~wfithian/
5https://cran.r-project.org/web/views/gR.html

109

http://www.stat.berkeley.edu/~wfithian/
https://cran.r-project.org/web/views/gR.html

9.6. PRACTICE YOURSELF CHAPTER 9. MULTIVARIATE DATA ANALYSIS

set.seed(3)
mu<-rexp(50,6)
multi<- rmvnorm(n = 100, mean = mu)

a. Use Hotelling’s test to determine if 𝜇 equals 𝜇0 = 0. Can you detect the signal?
b. Perform t.test on each variable and extract the p-value. Try to identify visually the variables which depart

from 𝜇0.
c. Use p.adjust to identify in which variables there are any departures from 𝜇0 = 0. Allow 5% probability of

making any false identification.
d. Use p.adjust to identify in which variables there are any departures from 𝜇0 = 0. Allow a 5% proportion

of errors within identifications.

2. Generate multivariate data from two groups: rmvnorm(n = 100, mean = rep(0,10)) for the first, and
rmvnorm(n = 100, mean = rep(0.1,10)) for the second.

a. Do we agree the groups differ?
b. Implement the two-group Hotelling test described in Wikipedia: (https://en.wikipedia.org/wiki/Hotelling%

27s_T-squared_distribution#Two-sample_statistic).
c. Verify that you are able to detect that the groups differ.
d. Perform a two-group t-test on each coordinate. On which coordinates can you detect signal while controlling

the FWER? On which while controlling the FDR? Use p.adjust.

3. Return to the previous problem, but set n=9. Verify that you cannot compute your Hotelling statistic.

110

https://en.wikipedia.org/wiki/Hotelling%27s_T-squared_distribution#Two-sample_statistic
https://en.wikipedia.org/wiki/Hotelling%27s_T-squared_distribution#Two-sample_statistic

Chapter 10

Supervised Learning

Machine learning is very similar to statistics, but it is certainly not the same. As the name suggests, in machine
learning we want machines to learn. This means that we want to replace hard-coded expert algorithm, with data-
driven self-learned algorithm.

There are many learning setups, that depend on what information is available to the machine. The most common
setup, discussed in this chapter, is supervised learning. The name takes from the fact that by giving the machine data
samples with known inputs (a.k.a. features) and desired outputs (a.k.a. labels), the human is effectively supervising
the learning. If we think of the inputs as predictors, and outcomes as predicted, it is no wonder that supervised
learning is very similar to statistical prediction. When asked “are these the same?” I like to give the example of
internet fraud. If you take a sample of fraud “attacks”, a statistical formulation of the problem is highly unlikely. This
is because fraud events are not randomly drawn from some distribution, but rather, arrive from an adversary learning
the defenses and adapting to it. This instance of supervised learning is more similar to game theory than statistics.

Other types of machine learning problems include (Sammut and Webb, 2011):

• Unsupervised Learning: Where we merely analyze the inputs/features, but no desirable outcome is available
to the learning machine. See Chapter 11.

• Semi Supervised Learning: Where only part of the samples are labeled. A.k.a. co-training, learning from
labeled and unlabeled data, transductive learning.

• Active Learning: Where the machine is allowed to query the user for labels. Very similar to adaptive design
of experiments.

• Learning on a Budget: A version of active learning where querying for labels induces variable costs.

• Weak Learning: A version of supervised learning where the labels are given not by an expert, but rather
by some heuristic rule. Example: mass-labeling cyber attacks by a rule based software, instead of a manual
inspection.

• Reinforcement Learning:
Similar to active learning, in that the machine may query for labels. Different from active learning, in that the
machine does not receive labels, but rewards.

• Structure Learning: An instance of supervised learning where we predict objects with structure such as
dependent vectors, graphs, images, tensors, etc.

• Online Learning: An instance of supervised learning, where we need to make predictions where data inputs as
a stream.

• Transduction: An instance of supervised learning where we need to make predictions for a new set of predictors,
but which are known at the time of learning. Can be thought of as semi-supervised extrapolation.

• Covariate shift: An instance of supervised learning where we need to make predictions for a set of predictors
that ha a different distribution than the data generating source.

• Targeted Learning: A form of supervised learning, designed at causal inference for decision making.

111

10.1. PROBLEM SETUP CHAPTER 10. SUPERVISED LEARNING

• Co-training: An instance of supervised learning where we solve several problems, and exploit some assumed
relation between the problems.

• Manifold learning: An instance of unsupervised learning, where the goal is to reduce the dimension of the
data by embedding it into a lower dimensional manifold. A.k.a. support estimation.

• Similarity Learning: Where we try to learn how to measure similarity between objects (like faces, texts,
images, etc.).

• Metric Learning: Like similarity learning, only that the similarity has to obey the definition of a metric.

• Learning to learn: Deals with the carriage of “experience” from one learning problem to another. A.k.a.
cummulative learning, knowledge transfer, and meta learning.

10.1 Problem Setup
We now present the empirical risk minimization (ERM) approach to supervised learning, a.k.a. M-estimation in the
statistical literature.

Remark. We do not discuss purely algorithmic approaches such as K-nearest neighbour and kernel smoothing due to
space constraints. For a broader review of supervised learning, see the Bibliographic Notes.

Example 10.1 (Rental Prices). Consider the problem of predicting if a mail is spam or not based on its attributes:
length, number of exclamation marks, number of recipients, etc.

Given 𝑛 samples with inputs 𝑥 from some space 𝒳 and desired outcome, 𝑦, from some space 𝒴. In our example,
𝑦 is the spam/no-spam label, and 𝑥 is a vector of the mail’s attributes. Samples, (𝑥, 𝑦) have some distribution we
denote 𝑃 . We want to learn a function that maps inputs to outputs, i.e., that classifies to spam given. This function
is called a hypothesis, or predictor, denoted 𝑓 , that belongs to a hypothesis class ℱ such that 𝑓 ∶ 𝒳 → 𝒴. We also
choose some other function that fines us for erroneous prediction. This function is called the loss, and we denote it by
𝑙 ∶ 𝒴 × 𝒴 → ℝ+.

Remark. The hypothesis in machine learning is only vaguely related the hypothesis in statistical testing, which is quite
confusing.

Remark. The hypothesis in machine learning is not a bona-fide statistical model since we don’t assume it is the data
generating process, but rather some function which we choose for its good predictive performance.

The fundamental task in supervised (statistical) learning is to recover a hypothesis that minimizes the average loss in
the sample, and not in the population. This is know as the risk minimization problem.

Definition 10.1 (Risk Function). The risk function, a.k.a. generalization error, or test error, is the population
average loss of a predictor 𝑓 :

𝑅(𝑓) ∶= 𝔼𝑃 [𝑙(𝑓(𝑥), 𝑦)]. (10.1)

The best predictor, is the risk minimizer:

𝑓∗ ∶= 𝑎𝑟𝑔𝑚𝑖𝑛𝑓{𝑅(𝑓)}. (10.2)

Another fundamental problem is that we do not know the distribution of all possible inputs and outputs, 𝑃 . We
typically only have a sample of (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑛. We thus state the empirical counterpart of (10.2), which consists
of minimizing the average loss. This is known as the empirical risk miminization problem (ERM).

Definition 10.2 (Empirical Risk). The empirical risk function, a.k.a. in-sample error, or train error, is the sample
average loss of a predictor 𝑓 :

𝑅𝑛(𝑓) ∶= 1/𝑛 ∑
𝑖

𝑙(𝑓(𝑥𝑖), 𝑦𝑖). (10.3)

112

CHAPTER 10. SUPERVISED LEARNING 10.1. PROBLEM SETUP

A good candidate proxy for 𝑓∗ is its empirical counterpart, ̂𝑓 , known as the empirical risk minimizer:
̂𝑓 ∶= 𝑎𝑟𝑔𝑚𝑖𝑛𝑓{𝑅𝑛(𝑓)}. (10.4)

To make things more explicit:

• 𝑓 may be a linear function of the attributes, so that it may be indexed simply with its coefficient vector 𝛽.
• 𝑙 may be a squared error loss: 𝑙(𝑓(𝑥), 𝑦) ∶= (𝑓(𝑥) − 𝑦)2.

Under these conditions, the best predictor 𝑓∗ ∈ ℱ from problem (10.2) is to

𝑓∗ ∶= 𝑎𝑟𝑔𝑚𝑖𝑛𝛽{𝔼𝑃(𝑥,𝑦)[(𝑥′𝛽 − 𝑦)2]}. (10.5)

When using a linear hypothesis with squared loss, we see that the empirical risk minimization problem collapses to an
ordinary least-squares problem:

̂𝑓 ∶= 𝑎𝑟𝑔𝑚𝑖𝑛𝛽{1/𝑛 ∑
𝑖

(𝑥′
𝑖𝛽 − 𝑦𝑖)2}. (10.6)

When data samples are assumingly independent, then maximum likelihood estimation is also an instance of ERM,
when using the (negative) log likelihood as the loss function.

If we don’t assume any structure on the hypothesis, 𝑓 , then ̂𝑓 from (10.4) will interpolate the data, and ̂𝑓 will be a
very bad predictor. We say, it will overfit the observed data, and will have bad performance on new data.

We have several ways to avoid overfitting:

1. Restrict the hypothesis class ℱ (such as linear functions).
2. Penalize for the complexity of 𝑓 . The penalty denoted by ‖𝑓‖.
3. Unbiased risk estimation: 𝑅𝑛(𝑓) is not an unbiased estimator of 𝑅(𝑓). Why? Think of estimating the mean

with the sample minimum… Because 𝑅𝑛(𝑓) is downward biased, we may add some correction term, or compute
𝑅𝑛(𝑓) on different data than the one used to recover ̂𝑓 .

Almost all ERM algorithms consist of some combination of all the three methods above.

10.1.1 Common Hypothesis Classes
Some common hypothesis classes, ℱ, with restricted complexity, are:

1. Linear hypotheses: such as linear models, GLMs, and (linear) support vector machines (SVM).

2. Neural networks: a.k.a. feed-forward neural nets, artificial neural nets, and the celebrated class of deep neural
nets.

3. Tree: a.k.a. decision rules, is a class of hypotheses which can be stated as “if-then” rules.

4. Reproducing Kernel Hilbert Space: a.k.a. RKHS, is a subset of “the space of all functions1” that is both
large enough to capture very complicated relations, but small enough so that it is less prone to overfitting, and
also surprisingly simple to compute with.

10.1.2 Common Complexity Penalties
The most common complexity penalty applies to classes that have a finite dimensional parametric representation, such
as the class of linear predictors, parametrized via its coefficients 𝛽. In such classes we may penalize for the norm of
the parameters. Common penalties include:

1. Ridge penalty: penalizing the 𝑙2 norm of the parameter. I.e. ‖𝑓‖ = ‖𝛽‖2
2 = ∑𝑗 𝛽2

𝑗 .
2. LASSO penalty: penalizing the 𝑙1 norm of the parameter. I.e., ‖𝑓‖ = ‖𝛽‖1 = ∑𝑗 |𝛽𝑗|. Also known as Basis

Pursuit, in signal processing.
3. Elastic net: a combination of the lasso and ridge penalty. I.e. ,‖𝑓‖ = 𝛼‖𝛽‖2

2 + (1 − 𝛼)‖𝛽‖1.
4. Function Norms: If the hypothesis class ℱ does not admit a finite dimensional representation, the penalty is no

longer a function of the parameters of the function. We may, however, penalize not the parametric representation
of the function, but rather the function itself ‖𝑓‖ = √∫ 𝑓(𝑡)2𝑑𝑡.

1It is even a subset of the Hilbert space, itself a subset of the space of all functions.

113

10.1. PROBLEM SETUP CHAPTER 10. SUPERVISED LEARNING

10.1.3 Unbiased Risk Estimation
The fundamental problem of overfitting, is that the empirical risk, 𝑅𝑛(̂𝑓), is downward biased to the population risk,
𝑅(̂𝑓). We can remove this bias in two ways: (a) purely algorithmic resampling approaches, and (b) theory driven
estimators.

1. Train-Validate-Test: The simplest form of algorithmic validation is to split the data. A train set to
train/estimate/learn ̂𝑓 . A validation set to compute the out-of-sample expected loss, 𝑅(̂𝑓), and pick the best
performing predictor. A test sample to compute the out-of-sample performance of the selected hypothesis. This
is a very simple approach, but it is very “data inefficient”, thus motivating the next method.

2. V-Fold Cross Validation: By far the most popular algorithmic unbiased risk estimator; in V-fold CV we
“fold” the data into 𝑉 non-overlapping sets. For each of the 𝑉 sets, we learn ̂𝑓 with the non-selected fold, and
assess 𝑅(̂𝑓)) on the selected fold. We then aggregate results over the 𝑉 folds, typically by averaging.

3. AIC: Akaike’s information criterion (AIC) is a theory driven correction of the empirical risk, so that it is unbiased
to the true risk. It is appropriate when using the likelihood loss.

4. Cp: Mallow’s Cp is an instance of AIC for likelihood loss under normal noise.

Other theory driven unbiased risk estimators include the Bayesian Information Criterion (BIC, aka SBC, aka SBIC),
the Minimum Description Length (MDL), Vapnic’s Structural Risk Minimization (SRM), the Deviance Information
Criterion (DIC), and the Hannan-Quinn Information Criterion (HQC).

Other resampling based unbiased risk estimators include resampling without replacement algorithms like delete-d
cross validation with its many variations, and resampling with replacement, like the bootstrap, with its many
variations.

10.1.4 Collecting the Pieces
An ERM problem with regularization will look like

̂𝑓 ∶= 𝑎𝑟𝑔𝑚𝑖𝑛𝑓∈ℱ{𝑅𝑛(𝑓) + 𝜆‖𝑓‖}. (10.7)

Collecting ideas from the above sections, a typical supervised learning pipeline will include: choosing the hypothesis
class, choosing the penalty function and level, unbiased risk estimator. We emphasize that choosing the penalty
function, ‖𝑓‖ is not enough, and we need to choose how “hard” to apply it. This if known as the regularization level,
denoted by 𝜆 in Eq.(10.7).

Examples of such combos include:

1. Linear regression, no penalty, train-validate test.
2. Linear regression, no penalty, AIC.
3. Linear regression, 𝑙2 penalty, V-fold CV. This combo is typically known as ridge regression.
4. Linear regression, 𝑙1 penalty, V-fold CV. This combo is typically known as LASSO regression.
5. Linear regression, 𝑙1 and 𝑙2 penalty, V-fold CV. This combo is typically known as elastic net regression.
6. Logistic regression, 𝑙2 penalty, V-fold CV.
7. SVM classification, 𝑙2 penalty, V-fold CV.
8. Deep network, no penalty, V-fold CV.
9. Unrestricted, ‖𝜕2𝑓‖2, V-fold CV. This combo is typically known as a smoothing spline.

For fans of statistical hypothesis testing we will also emphasize: Testing and prediction are related, but are not the
same:

• In the current chapter, we do not claim our models, 𝑓 , are generative. I.e., we do not claim that there is some
causal relation between 𝑥 and 𝑦. We only claim that 𝑥 predicts 𝑦.

• It is possible that we will want to ignore a significant predictor, and add a non-significant one (Foster and Stine,
2004).

• Some authors will use hypothesis testing as an initial screening for candidate predictors. This is a useful heuris-
tic, but that is all it is– a heuristic. It may also fail miserably if predictors are linearly dependent (a.k.a.
multicollinear).

114

CHAPTER 10. SUPERVISED LEARNING 10.2. SUPERVISED LEARNING IN R

10.2 Supervised Learning in R
At this point, we have a rich enough language to do supervised learning with R.

In these examples, I will use two data sets from the ElemStatLearn package, that accompanies the seminal book by
Friedman et al. (2001). I use the spam data for categorical predictions, and prostate for continuous predictions. In
spam we will try to decide if a mail is spam or not. In prostate we will try to predict the size of a cancerous tumor.
You can now call ?prostate and ?spam to learn more about these data sets.

Some boring pre-processing.
Preparing prostate data
data("prostate", package = 'ElemStatLearn')
prostate <- data.table::data.table(prostate)
prostate.train <- prostate[train==TRUE, -"train"]
prostate.test <- prostate[train!=TRUE, -"train"]
y.train <- prostate.train$lcavol
X.train <- as.matrix(prostate.train[, -'lcavol'])
y.test <- prostate.test$lcavol
X.test <- as.matrix(prostate.test[, -'lcavol'])

Preparing spam data:
data("spam", package = 'ElemStatLearn')
n <- nrow(spam)
train.prop <- 0.66
train.ind <- sample(x = c(TRUE,FALSE),

size = n,
prob = c(train.prop,1-train.prop),
replace=TRUE)

spam.train <- spam[train.ind,]
spam.test <- spam[!train.ind,]

y.train.spam <- spam.train$spam
X.train.spam <- as.matrix(spam.train[,names(spam.train)!='spam'])
y.test.spam <- spam.test$spam
X.test.spam <- as.matrix(spam.test[,names(spam.test)!='spam'])

spam.dummy <- spam
spam.dummy$spam <- as.numeric(spam$spam=='spam')
spam.train.dummy <- spam.dummy[train.ind,]
spam.test.dummy <- spam.dummy[!train.ind,]

We also define some utility functions that we will require down the road.
l2 <- function(x) x^2 %>% sum %>% sqrt
l1 <- function(x) abs(x) %>% sum
MSE <- function(x) x^2 %>% mean
missclassification <- function(tab) sum(tab[c(2,3)])/sum(tab)

10.2.1 Linear Models with Least Squares Loss
The simplest approach to supervised learning, is simply with OLS: a linear predictor, squared error loss, and train-test
risk estimator. Notice the better in-sample MSE than the out-of-sample. That is overfitting in action.
ols.1 <- lm(lcavol~. ,data = prostate.train)
Train error:
MSE(predict(ols.1)-prostate.train$lcavol)

[1] 0.4383709

115

10.2. SUPERVISED LEARNING IN R CHAPTER 10. SUPERVISED LEARNING

Test error:
MSE(predict(ols.1, newdata=prostate.test)- prostate.test$lcavol)

[1] 0.5084068

Things to note:

• I use the newdata argument of the predict function to make the out-of-sample predictions required to compute
the test-error.

• The test error is larger than the train error. That is overfitting in action.

We now implement a V-fold CV, instead of our train-test approach. The assignment of each observation to each fold
is encoded in fold.assignment. The following code is extremely inefficient, but easy to read.
folds <- 10
fold.assignment <- sample(1:folds, nrow(prostate), replace = TRUE)
errors <- NULL

for (k in 1:folds){
prostate.cross.train <- prostate[fold.assignment!=k,] # train subset
prostate.cross.test <- prostate[fold.assignment==k,] # test subset
.ols <- lm(lcavol~. ,data = prostate.cross.train) # train
.predictions <- predict(.ols, newdata=prostate.cross.test)
.errors <- .predictions-prostate.cross.test$lcavol # save prediction errors in the fold
errors <- c(errors, .errors) # aggregate error over folds.

}

Cross validated prediction error:
MSE(errors)

[1] 0.5404713

Let’s try all possible variable subsets, and choose the best performer with respect to the Cp criterion, which is an
unbiased risk estimator. This is done with leaps::regsubsets. We see that the best performer has 3 predictors.
regfit.full <- prostate.train %>%
leaps::regsubsets(lcavol~.,data = ., method = 'exhaustive') # best subset selection

plot(regfit.full, scale = "Cp")

subset-1.bb

C
p

(I
nt

er
ce

pt
)

lw
ei

gh
t

ag
e

lb
ph sv

i

lc
p

gl
ea

so
n

pg
g4

5

lp
sa

30
9
7

5.2
4.3
3.7
2.8
2.7

Things to note:

• The plot shows us which is the variable combination which is the best, i.e., has the smallest Cp.
• Scanning over all variable subsets is impossible when the number of variables is large.

Instead of the Cp criterion, we now compute the train and test errors for all the possible predictor subsets2. In the
resulting plot we can see overfitting in action.

2Example taken from https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/ch6.html

116

https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/ch6.html

CHAPTER 10. SUPERVISED LEARNING 10.2. SUPERVISED LEARNING IN R

model.n <- regfit.full %>% summary %>% length
X.train.named <- model.matrix(lcavol ~ ., data = prostate.train)
X.test.named <- model.matrix(lcavol ~ ., data = prostate.test)

val.errors <- rep(NA, model.n)
train.errors <- rep(NA, model.n)
for (i in 1:model.n) {

coefi <- coef(regfit.full, id = i) # exctract coefficients of i'th model

pred <- X.train.named[, names(coefi)] %*% coefi # make in-sample predictions
train.errors[i] <- MSE(y.train - pred) # train errors

pred <- X.test.named[, names(coefi)] %*% coefi # make out-of-sample predictions
val.errors[i] <- MSE(y.test - pred) # test errors

}

Plotting results.
plot(train.errors, ylab = "MSE", pch = 19, type = "o")
points(val.errors, pch = 19, type = "b", col="blue")
legend("topright",

legend = c("Training", "Validation"),
col = c("black", "blue"),
pch = 19)

1 2 3 4 5 6 7 8

0.
45

0.
55

0.
65

Index

M
S

E

Training
Validation

Checking all possible models is computationally very hard. Forward selection is a greedy approach that adds one
variable at a time.
ols.0 <- lm(lcavol~1 ,data = prostate.train)
model.scope <- list(upper=ols.1, lower=ols.0)
step(ols.0, scope=model.scope, direction='forward', trace = TRUE)

Start: AIC=30.1
lcavol ~ 1
##
Df Sum of Sq RSS AIC
+ lpsa 1 54.776 47.130 -19.570
+ lcp 1 48.805 53.101 -11.578
+ svi 1 35.829 66.077 3.071
+ pgg45 1 23.789 78.117 14.285
+ gleason 1 18.529 83.377 18.651
+ lweight 1 9.186 92.720 25.768
+ age 1 8.354 93.552 26.366
<none> 101.906 30.097

117

10.2. SUPERVISED LEARNING IN R CHAPTER 10. SUPERVISED LEARNING

+ lbph 1 0.407 101.499 31.829
##
Step: AIC=-19.57
lcavol ~ lpsa
##
Df Sum of Sq RSS AIC
+ lcp 1 14.8895 32.240 -43.009
+ svi 1 5.0373 42.093 -25.143
+ gleason 1 3.5500 43.580 -22.817
+ pgg45 1 3.0503 44.080 -22.053
+ lbph 1 1.8389 45.291 -20.236
+ age 1 1.5329 45.597 -19.785
<none> 47.130 -19.570
+ lweight 1 0.4106 46.719 -18.156
##
Step: AIC=-43.01
lcavol ~ lpsa + lcp
##
Df Sum of Sq RSS AIC
<none> 32.240 -43.009
+ age 1 0.92315 31.317 -42.955
+ pgg45 1 0.29594 31.944 -41.627
+ gleason 1 0.21500 32.025 -41.457
+ lbph 1 0.13904 32.101 -41.298
+ lweight 1 0.05504 32.185 -41.123
+ svi 1 0.02069 32.220 -41.052

##
Call:
lm(formula = lcavol ~ lpsa + lcp, data = prostate.train)
##
Coefficients:
(Intercept) lpsa lcp
0.08798 0.53369 0.38879

Things to note:

• By default step add variables according to the AIC3 criterion, which is a theory-driven unbiased risk estimator.
• We need to tell step which is the smallest and largest models to consider using the scope argument.
• direction='forward' is used to “grow” from a small model. For “shrinking” a large model, use

direction='backward', or the default direction='stepwise'.

We now learn a linear predictor on the spam data using, a least squares loss, and train-test risk estimator.
Train the predictor
ols.2 <- lm(spam~., data = spam.train.dummy)

make in-sample predictions
.predictions.train <- predict(ols.2) > 0.5
inspect the confusion matrix
(confusion.train <- table(prediction=.predictions.train, truth=spam.train.dummy$spam))

truth
prediction 0 1
FALSE 1778 227
TRUE 66 980
compute the train (in sample) misclassification
missclassification(confusion.train)

3https://en.wikipedia.org/wiki/Akaike_information_criterion

118

https://en.wikipedia.org/wiki/Akaike_information_criterion

CHAPTER 10. SUPERVISED LEARNING 10.2. SUPERVISED LEARNING IN R

[1] 0.09603409
make out-of-sample prediction
.predictions.test <- predict(ols.2, newdata = spam.test.dummy) > 0.5
inspect the confusion matrix
(confusion.test <- table(prediction=.predictions.test, truth=spam.test.dummy$spam))

truth
prediction 0 1
FALSE 884 139
TRUE 60 467
compute the train (in sample) misclassification
missclassification(confusion.test)

[1] 0.1283871

Things to note:

• I can use lm for categorical outcomes. lm will simply dummy-code the outcome.
• A linear predictor trained on 0’s and 1’s will predict numbers. Think of these numbers as the probability of 1,

and my prediction is the most probable class: predicts()>0.5.
• The train error is smaller than the test error. This is overfitting in action.

The glmnet package is an excellent package that provides ridge, LASSO, and elastic net regularization, for all GLMs,
so for linear models in particular.
library(glmnet)

means <- apply(X.train, 2, mean)
sds <- apply(X.train, 2, sd)
X.train.scaled <- X.train %>% sweep(MARGIN = 2, STATS = means, FUN = `-`) %>%

sweep(MARGIN = 2, STATS = sds, FUN = `/`)

ridge.2 <- glmnet(x=X.train.scaled, y=y.train, family = 'gaussian', alpha = 0)

Train error:
MSE(predict(ridge.2, newx =X.train.scaled)- y.train)

[1] 1.006028
Test error:
X.test.scaled <- X.test %>% sweep(MARGIN = 2, STATS = means, FUN = `-`) %>%
sweep(MARGIN = 2, STATS = sds, FUN = `/`)

MSE(predict(ridge.2, newx = X.test.scaled)- y.test)

[1] 0.7678264

Things to note:

• The alpha=0 parameters tells R to do ridge regression. Setting 𝑎𝑙𝑝ℎ𝑎 = 1 will do LASSO, and any other value,
with return an elastic net with appropriate weights.

• The family='gaussian' argument tells R to fit a linear model, with least squares loss.
• Features for regularized predictors should be z-scored before learning.
• We use the sweep function to z-score the predictors: we learn the z-scoring from the train set, and apply it to

both the train and the test.
• The test error is smaller than the train error. This may happen because risk estimators are random. Their

variance may mask the overfitting.

We now use the LASSO penalty.
lasso.1 <- glmnet(x=X.train.scaled, y=y.train, , family='gaussian', alpha = 1)

119

10.2. SUPERVISED LEARNING IN R CHAPTER 10. SUPERVISED LEARNING

Train error:
MSE(predict(lasso.1, newx =X.train.scaled)- y.train)

[1] 0.5525279
Test error:
MSE(predict(lasso.1, newx = X.test.scaled)- y.test)

[1] 0.5211263

We now use glmnet for classification.
means.spam <- apply(X.train.spam, 2, mean)
sds.spam <- apply(X.train.spam, 2, sd)
X.train.spam.scaled <- X.train.spam %>% sweep(MARGIN = 2, STATS = means.spam, FUN = `-`) %>%
sweep(MARGIN = 2, STATS = sds.spam, FUN = `/`) %>% as.matrix

logistic.2 <- cv.glmnet(x=X.train.spam.scaled, y=y.train.spam, family = "binomial", alpha = 0)

Things to note:

• We used cv.glmnet to do an automatic search for the optimal level of regularization (the lambda argument in
glmnet) using V-fold CV.

• Just like the glm function, 'family='binomial' is used for logistic regression.
• We z-scored features so that they all have the same scale.
• We set alpha=0 for an 𝑙2 penalization of the coefficients of the logistic regression.

Train confusion matrix:
.predictions.train <- predict(logistic.2, newx = X.train.spam.scaled, type = 'class')
(confusion.train <- table(prediction=.predictions.train, truth=spam.train$spam))

truth
prediction email spam
email 1779 172
spam 65 1035
Train misclassification error
missclassification(confusion.train)

[1] 0.07767945
Test confusion matrix:
X.test.spam.scaled <- X.test.spam %>% sweep(MARGIN = 2, STATS = means.spam, FUN = `-`) %>%
sweep(MARGIN = 2, STATS = sds.spam, FUN = `/`) %>% as.matrix

.predictions.test <- predict(logistic.2, newx = X.test.spam.scaled, type='class')
(confusion.test <- table(prediction=.predictions.test, truth=y.test.spam))

truth
prediction email spam
email 885 111
spam 59 495
Test misclassification error:
missclassification(confusion.test)

[1] 0.1096774

120

CHAPTER 10. SUPERVISED LEARNING 10.2. SUPERVISED LEARNING IN R

10.2.2 SVM
A support vector machine (SVM) is a linear hypothesis class with a particular loss function known as a hinge loss4.
We learn an SVM with the svm function from the e1071 package, which is merely a wrapper for the libsvm5 C library;
the most popular implementation of SVM today.
library(e1071)
svm.1 <- svm(spam~., data = spam.train, kernel='linear')

Train confusion matrix:
.predictions.train <- predict(svm.1)
(confusion.train <- table(prediction=.predictions.train, truth=spam.train$spam))

truth
prediction email spam
email 1774 106
spam 70 1101
missclassification(confusion.train)

[1] 0.057686
Test confusion matrix:
.predictions.test <- predict(svm.1, newdata = spam.test)
(confusion.test <- table(prediction=.predictions.test, truth=spam.test$spam))

truth
prediction email spam
email 876 75
spam 68 531
missclassification(confusion.test)

[1] 0.09225806

We can also use SVM for regression.
svm.2 <- svm(lcavol~., data = prostate.train, kernel='linear')

Train error:
MSE(predict(svm.2)- prostate.train$lcavol)

[1] 0.4488577
Test error:
MSE(predict(svm.2, newdata = prostate.test)- prostate.test$lcavol)

[1] 0.5547759

Things to note:

• The use of kernel='linear' forces the predictor to be linear. Various hypothesis classes may be used by
changing the kernel argument.

10.2.3 Neural Nets
Neural nets (non deep) can be fitted, for example, with the nnet function in the nnet package. We start with a nnet
regression.
library(nnet)
nnet.1 <- nnet(lcavol~., size=20, data=prostate.train, rang = 0.1, decay = 5e-4, maxit = 1000, trace=FALSE)

4https://en.wikipedia.org/wiki/Hinge_loss
5https://www.csie.ntu.edu.tw/~cjlin/libsvm/

121

https://en.wikipedia.org/wiki/Hinge_loss
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

10.2. SUPERVISED LEARNING IN R CHAPTER 10. SUPERVISED LEARNING

Train error:
MSE(predict(nnet.1)- prostate.train$lcavol)

[1] 1.176479
Test error:
MSE(predict(nnet.1, newdata = prostate.test)- prostate.test$lcavol)

[1] 1.489769

And nnet classification.
nnet.2 <- nnet(spam~., size=5, data=spam.train, rang = 0.1, decay = 5e-4, maxit = 1000, trace=FALSE)

Train confusion matrix:
.predictions.train <- predict(nnet.2, type='class')
(confusion.train <- table(prediction=.predictions.train, truth=spam.train$spam))

truth
prediction email spam
email 1825 56
spam 19 1151
missclassification(confusion.train)

[1] 0.0245821
Test confusion matrix:
.predictions.test <- predict(nnet.2, newdata = spam.test, type='class')
(confusion.test <- table(prediction=.predictions.test, truth=spam.test$spam))

truth
prediction email spam
email 891 66
spam 53 540
missclassification(confusion.test)

[1] 0.07677419

10.2.3.1 Deep Neural Nets

Deep-Neural-Networks are undoubtedly the “hottest” topic in machine-learning and artificial intelligence. This real is
too vast to be covered in this text. We merely refer the reader to the tensorflow6 package documentation as a starting
point.

10.2.4 Classification and Regression Trees (CART)
A CART, is not a linear hypothesis class. It partitions the feature space 𝒳, thus creating a set of if-then rules for
prediction or classification. It is thus particularly useful when you believe that the predicted classes may change
abruptly with small changes in 𝑥.

10.2.4.1 The rpart Package

This view clarifies the name of the function rpart, which recursively partitions the feature space.

We start with a regression tree.
library(rpart)
tree.1 <- rpart(lcavol~., data=prostate.train)

6https://cran.r-project.org/package=tensorflow

122

https://cran.r-project.org/package=tensorflow

CHAPTER 10. SUPERVISED LEARNING 10.2. SUPERVISED LEARNING IN R

Train error:
MSE(predict(tree.1)- prostate.train$lcavol)

[1] 0.4909568
Test error:
MSE(predict(tree.1, newdata = prostate.test)- prostate.test$lcavol)

[1] 0.5623316

We can use the rpart.plot package to visualize and interpret the predictor.
rpart.plot::rpart.plot(tree.1)

lcp < 0.26

lpsa < 2.4

lweight >= 3.2

lcp < 1.7

1.3
100%

0.72
66%

0.23
39%

−0.11
24%

0.77
15%

1.4
27%

2.5
34%

2.1
21%

3
13%

yes no

Or the newer ggparty7 package, for trees fitted with the party8 package.

Trees are very prone to overfitting. To avoid this, we reduce a tree’s complexity by pruning it. This is done with the
rpart::prune function (not demonstrated herein).

We now fit a classification tree.
tree.2 <- rpart(spam~., data=spam.train)

Train confusion matrix:
.predictions.train <- predict(tree.2, type='class')
(confusion.train <- table(prediction=.predictions.train, truth=spam.train$spam))

truth
prediction email spam
email 1785 217
spam 59 990
missclassification(confusion.train)

[1] 0.09046214
Test confusion matrix:
.predictions.test <- predict(tree.2, newdata = spam.test, type='class')
(confusion.test <- table(prediction=.predictions.test, truth=spam.test$spam))

truth
prediction email spam
email 906 125

7https://cran.r-project.org/web/packages/ggparty/vignettes/ggparty-graphic-partying.html
8https://cran.r-project.org/package=party

123

https://cran.r-project.org/web/packages/ggparty/vignettes/ggparty-graphic-partying.html
https://cran.r-project.org/package=party

10.2. SUPERVISED LEARNING IN R CHAPTER 10. SUPERVISED LEARNING

spam 38 481
missclassification(confusion.test)

[1] 0.1051613

10.2.4.2 The caret Package

In the rpart package [10.2.4.1] we grow a tree with one function, and then prune it with another.
The caret implementation of trees does both with a single function. We demonstrate the package in the context of
trees, but it is actually a very convenient wrapper for many learning algorithms; 237(!)9 learning algorithms to be
precise.
library(caret)
Control some training parameters
train.control <- trainControl(method = "cv",

number = 10)

tree.3 <- train(lcavol~., data=prostate.train,
method='rpart',
trControl=train.control)

tree.3

CART
##
67 samples
8 predictor
##
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 61, 59, 60, 60, 59, 60, ...
Resampling results across tuning parameters:
##
cp RMSE Rsquared MAE
0.04682924 0.9668668 0.4461882 0.8228133
0.14815712 1.0015301 0.3936400 0.8483732
0.44497285 1.2100666 0.1678312 1.0055867
##
RMSE was used to select the optimal model using the smallest value.
The final value used for the model was cp = 0.04682924.
Train error:
MSE(predict(tree.3)- prostate.train$lcavol)

[1] 0.6188435
Test error:
MSE(predict(tree.3, newdata = prostate.test)- prostate.test$lcavol)

[1] 0.545632

Things to note:

• A tree was trained because of the method='rpart' argument. Many other predictive models are available. See
here10.

• The pruning of the tree was done automatically by the caret::train() function.
• The method of pruning is controlled by a control object, generated with the caret::trainControl() function.

In our case, method = "cv" for cross-validation, and number = 10 for 10-folds.
• The train error is larger than the test error. This is possible because the tree is not an ERM on the train data.

Rather, it is an ERM on the variations of the data generated by the cross-validation process.
9http://topepo.github.io/caret/available-models.html#

10http://topepo.github.io/caret/available-models.html

124

http://topepo.github.io/caret/available-models.html#
http://topepo.github.io/caret/available-models.html

CHAPTER 10. SUPERVISED LEARNING 10.2. SUPERVISED LEARNING IN R

10.2.4.3 The parsnip package

At this point you may have noted that different R packages have differet interfaces to specify and fit models. Wouldn’t
it be nice to have a unified language that allows to specify a model, indpendently of the undelying fitting libraries?
This is percisely the purpose of parsnip11, created by Max Kuhn12, the author of caret. With parsnip, you specify a
model, save it, and can later dispatch it to fitting with lm, glmnet, Spark, or other fitting libraries. This is much
like ggplot2, where you specify a plot, save it, and dispatch it for printing using print().

TODO: add code examples.

10.2.5 K-nearest neighbour (KNN)
KNN is not an ERM problem. In the KNN algorithm, a prediction at some 𝑥 is made based on the 𝑦 is it neighbors.
This means that:

• KNN is an Instance Based13 learning algorithm where we do not learn the values of some parametric function, but
rather, need the original sample to make predictions. This has many implications when dealing with “BigData”.

• It may only be applied in spaces with known/defined metric. It is thus harder to apply in the presence of missing
values, or in “string-spaces”, “genome-spaces”, etc. where no canonical metric exists.

KNN is so fundamental that we show how to fit such a hypothesis class, even if it not an ERM algorithm. Is KNN
any good? I have never seen a learning problem where KNN beats other methods. Others claim differently.
library(class)
knn.1 <- knn(train = X.train.spam.scaled, test = X.test.spam.scaled, cl =y.train.spam, k = 1)

Test confusion matrix:
.predictions.test <- knn.1
(confusion.test <- table(prediction=.predictions.test, truth=spam.test$spam))

truth
prediction email spam
email 856 86
spam 88 520
missclassification(confusion.test)

[1] 0.1122581

10.2.6 Linear Discriminant Analysis (LDA)
LDA is equivalent to least squares classification 10.2.1. This means that we actually did LDA when we used lm for
binary classification (feel free to compare the confusion matrices). There are, however, some dedicated functions to fit
it which we now introduce.
library(MASS)
lda.1 <- lda(spam~., spam.train)

Train confusion matrix:
.predictions.train <- predict(lda.1)$class
(confusion.train <- table(prediction=.predictions.train, truth=spam.train$spam))

truth
prediction email spam
email 1776 227
spam 68 980
missclassification(confusion.train)

[1] 0.09668961
11https://github.com/tidymodels/parsnip
12https://twitter.com/topepos
13https://en.wikipedia.org/wiki/Instance-based_learning

125

https://github.com/tidymodels/parsnip
https://twitter.com/topepos
https://en.wikipedia.org/wiki/Instance-based_learning

10.2. SUPERVISED LEARNING IN R CHAPTER 10. SUPERVISED LEARNING

Test confusion matrix:
.predictions.test <- predict(lda.1, newdata = spam.test)$class
(confusion.test <- table(prediction=.predictions.test, truth=spam.test$spam))

truth
prediction email spam
email 884 138
spam 60 468
missclassification(confusion.test)

[1] 0.1277419

10.2.7 Naive Bayes
Naive-Bayes can be thought of LDA, i.e. linear regression, where predictors are assume to be uncorrelated. Predictions
may be very good and certainly very fast, even if this assumption is not true.
library(e1071)
nb.1 <- naiveBayes(spam~., data = spam.train)

Train confusion matrix:
.predictions.train <- predict(nb.1, newdata = spam.train)
(confusion.train <- table(prediction=.predictions.train, truth=spam.train$spam))

truth
prediction email spam
email 1025 55
spam 819 1152
missclassification(confusion.train)

[1] 0.2864635
Test confusion matrix:
.predictions.test <- predict(nb.1, newdata = spam.test)
(confusion.test <- table(prediction=.predictions.test, truth=spam.test$spam))

truth
prediction email spam
email 484 42
spam 460 564
missclassification(confusion.test)

[1] 0.323871

10.2.8 Random Forrest
A Random Forrest is one of the most popular supervised learning algorithms. It it an extremely successful algorithm,
with very few tuning parameters, and easily parallelizable (thus salable to massive datasets).
Control some training parameters
train.control <- trainControl(method = "cv", number = 10)
rf.1 <- caret::train(lcavol~., data=prostate.train,

method='rf',
trControl=train.control)

rf.1

Random Forest
##
67 samples
8 predictor

126

CHAPTER 10. SUPERVISED LEARNING 10.3. BIBLIOGRAPHIC NOTES

##
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 61, 60, 59, 61, 61, 59, ...
Resampling results across tuning parameters:
##
mtry RMSE Rsquared MAE
2 0.7971605 0.6452185 0.6723825
5 0.7718659 0.6603524 0.6454595
8 0.7748043 0.6593911 0.6463712
##
RMSE was used to select the optimal model using the smallest value.
The final value used for the model was mtry = 5.
Train error:
MSE(predict(rf.1)- prostate.train$lcavol)

[1] 0.139739
Test error:
MSE(predict(rf.1, newdata = prostate.test)- prostate.test$lcavol)

[1] 0.5341458

Some of the many many many packages that learn random-forests include: randomForest14, ranger15.

10.2.9 Boosting
The fundamental idea behind Boosting is to construct a predictor, as the sum of several “weak” predictors. These
weak predictors, are not trained on the same data. Instead, each predictor is trained on the residuals of the previous.
Think of it this way: The first predictor targets the strongest signal. The second targets what the first did not predict.
Etc. At some point, the residuals cannot be predicted anymore, and the learning will stabilize. Boosting is typically,
but not necessarily, implemented as a sum of trees (@(trees)).

10.2.9.1 The gbm Package

TODO

10.2.9.2 The xgboost Package

TODO

10.3 Bibliographic Notes
The ultimate reference on (statistical) machine learning is Friedman et al. (2001). For a softer introduction, see James
et al. (2013). A statistician will also like Ripley (2007). For a very algorithmic view, see the seminal Leskovec et al.
(2014) or Conway and White (2012). For a much more theoretical reference, see Mohri et al. (2012), Vapnik (2013),
Shalev-Shwartz and Ben-David (2014). Terminology taken from Sammut and Webb (2011). For an R oriented view
see Lantz (2013). For review of other R sources for machine learning see Jim Savege’s post16, or the official Task
View17. For a review of resampling based unbiased risk estimation (i.e. cross validation) see the exceptional review of
Arlot et al. (2010). For feature engineering: Feature Engineering and Selection: A Practical Approach for Predictive
Models18. If you want to know about Deep-Nets in R see here19.

14https://cran.r-project.org/package=randomForest
15https://cran.r-project.org/package=ranger
16http://modernstatisticalworkflow.blogspot.com/2018/01/some-good-introductory-machine-learning.html
17https://cran.r-project.org/web/views/MachineLearning.html
18https://bookdown.org/max/FES/
19https://www.datacamp.com/community/tutorials/keras-r-deep-learning

127

https://cran.r-project.org/package=randomForest
https://cran.r-project.org/package=ranger
http://modernstatisticalworkflow.blogspot.com/2018/01/some-good-introductory-machine-learning.html
https://cran.r-project.org/web/views/MachineLearning.html
https://bookdown.org/max/FES/
https://www.datacamp.com/community/tutorials/keras-r-deep-learning

10.4. PRACTICE YOURSELF CHAPTER 10. SUPERVISED LEARNING

10.4 Practice Yourself
1. In 7.6 we fit a GLM for the MASS::epil data (Poisson family). We assume that the number of seizures (𝑦)

depending on the age of the patient (age) and the treatment (trt).
1. What was the MSE of the model?
2. Now, try the same with a ridge penalty using glmnet (alpha=0).
3. Do the same with a LASSO penalty (alpha=1).
4. Compare the test MSE of the three models. Which is the best ?

2. Read about the Glass dataset using data(Glass, package="mlbench") and ?Glass.
1. Divide the dataset to train set and test set.
2. Apply the various predictors from this chapter, and compare them using the proportion of missclassified.

See DataCamp’s Supervised Learning in R: Classification20, and Supervised Learning in R: Regression21 for more self
practice.

20https://www.datacamp.com/courses/supervised-learning-in-r-classification
21https://www.datacamp.com/courses/supervised-learning-in-r-regression

128

https://www.datacamp.com/courses/supervised-learning-in-r-classification
https://www.datacamp.com/courses/supervised-learning-in-r-regression

Chapter 11

Unsupervised Learning

This chapter deals with machine learning problems which are unsupervised. This means the machine has access to a
set of inputs, 𝑥, but the desired outcome, 𝑦 is not available. Clearly, learning a relation between inputs and outcomes is
impossible, but there are still a lot of problems of interest. In particular, we may want to find a compact representation
of the inputs, be it for visualization of further processing. This is the problem of dimensionality reduction. For the
same reasons we may want to group similar inputs. This is the problem of clustering.

In the statistical terminology, with some exceptions, this chapter can be thought of as multivariate exploratory
statistics. For multivariate inference, see Chapter 9.

11.1 Dimensionality Reduction
Example 11.1. Consider the heights and weights of a sample of individuals. The data may seemingly reside in 2
dimensions but given the height, we have a pretty good guess of a persons weight, and vice versa. We can thus state
that heights and weights are not really two dimensional, but roughly lay on a 1 dimensional subspace of ℝ2.

Example 11.2. Consider the correctness of the answers to a questionnaire with 𝑝 questions. The data may seemingly
reside in a 𝑝 dimensional space, but if there is a thing such as “skill”, then given the correctness of a person’s reply to
a subset of questions, we have a good idea how he scores on the rest. If skill is indeed a one dimensional quality, then
the questionnaire data should organize around a single line in the 𝑝 dimensional cube.

Example 11.3. Consider 𝑛 microphones recording an individual. The digitized recording consists of 𝑝 samples. Are
the recordings really a shapeless cloud of 𝑛 points in ℝ𝑝? Since they all record the same sound, one would expect
the 𝑛 𝑝-dimensional points to arrange around the original, noisless, sound: a single point in ℝ𝑝. If microphones have
different distances to the source, volumes and echoes may differ. We would thus expect the 𝑛 points to arrange about
a line in ℝ𝑝.

11.1.1 Principal Component Analysis
Principal Component Analysis (PCA) is such a basic technique, it has been rediscovered and renamed independently
in many fields. It can be found under the names of Discrete Karhunen–Loève Transform; Hotteling Transform; Proper
Orthogonal Decomposition; Eckart–Young Theorem; Schmidt–Mirsky Theorem; Empirical Orthogonal Functions; Em-
pirical Eigenfunction Decomposition; Empirical Component Analysis; Quasi-Harmonic Modes; Spectral Decomposi-
tion; Empirical Modal Analysis, and possibly more1. The many names are quite interesting as they offer an insight
into the different problems that led to PCA’s (re)discovery.

Return to the BMI problem in Example 11.1. Assume you wish to give each individual a “size score”. Also assume
this score is a linear combination of height and weight. That is the problem solved by PCA: It returns the linear
combination that has the largest variability, i.e., the combination which best distinguishes between individuals.

The variance maximizing motivation above was the one that guided Hotelling (1933). But 30 years before him, Pearson
(1901) derived the same procedure with a different motivation in mind. Pearson was also trying to give each individual

1http://en.wikipedia.org/wiki/Principal_component_analysis

129

http://en.wikipedia.org/wiki/Principal_component_analysis

11.1. DIMENSIONALITY REDUCTION CHAPTER 11. UNSUPERVISED LEARNING

a score. He did not care about variance maximization, however. He simply wanted a small set of coordinates in some
(linear) space that approximates the original data well.

Before we proceed, we give an example to fix ideas. Consider the crime rate data in USArrests, which encodes reported
murder events, assaults, rapes, and the urban population of each american state.
head(USArrests)

Murder Assault UrbanPop Rape
Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5
Arizona 8.1 294 80 31.0
Arkansas 8.8 190 50 19.5
California 9.0 276 91 40.6
Colorado 7.9 204 78 38.7

Following Hotelling’s motivation, we may want to give each state a “crimilality score”. We first remove the UrbanPop
variable, which does not encode crime levels. We then z-score each variable with base::scale(), and call PCA for a
sequence of 1, … , 3 criminality scores that best separate between states.
USArrests.1 <- USArrests[,-3] %>% scale
pca.1 <- prcomp(USArrests.1, scale = TRUE)
pca.1

Standard deviations (1, .., p=3):
[1] 1.5357670 0.6767949 0.4282154
##
Rotation (n x k) = (3 x 3):
PC1 PC2 PC3
Murder -0.5826006 0.5339532 -0.6127565
Assault -0.6079818 0.2140236 0.7645600
Rape -0.5393836 -0.8179779 -0.1999436

Things to note and terminology:

• The score that best distinguishes between states should be indifferent to the average of each variable. We
also don’t want the score to be sensitive to the measurement scale. Formally, we want the scores to be affine
invariant. We thus perform PCA in the z-score scale of each variable, obtained with the scale function.

• PCA is performed with the stats::prcomp function. It returns the contribution (weight) of the original variables,
to the new crimeness score. After rescaling, these weights are called the loadings. Borrowing from the Factor
Analaysis literature, the loadings may be called Rotations, which is their name in the stats::prcomp() output.
If you are confused between weights, loadings and rotations, see this Cross Validated2 entry.

• The number of possible scores, is the same as the number of original variables in the data.

• The new scores are called the principal components, labeled PC1,…,PC3 in our output. They are computed by
summing the original variables weighted by their loadings.

• The loadings/rotation on PC1 tell us that the best separation between states is along the average crime rate.
Why is this? Because all the 3 crime variables have a similar loading on PC1.

• The other PCs are slightly harder to interpret, but it is an interesting exercise.

If we now represent each state, not with its original 3 crimes measurements variables, but only with
the first 2 PCs (for example), we have reduced the dimensionality of the data.

11.1.1.1 Mathematics of PCA

What is the mathematical problem that is actually solved with PCA? Finding a linear combination (𝑣) of the original
variables (𝑥), so that the new score/index (𝑣′𝑥) best separates individuals. Best separation implies that the variance
of 𝑣′𝑥 is maximal. Clearly, 𝑉 𝑎𝑟[𝑣′𝑥] may explode if any 𝑣 is allowed, so we need to pick 𝑣 from some “fair” set. It

2https://stats.stackexchange.com/questions/143905/loadings-vs-eigenvectors-in-pca-when-to-use-one-or-another

130

https://stats.stackexchange.com/questions/143905/loadings-vs-eigenvectors-in-pca-when-to-use-one-or-another

CHAPTER 11. UNSUPERVISED LEARNING 11.1. DIMENSIONALITY REDUCTION

is most convenient, mathematically, to constrain the 𝑙2 norm to some constant: ‖𝑣‖2
2 = ∑ 𝑣2

𝑗 = 1. The first “best
separating score”, known as the first principal component (PC), is thus

𝑣′
1𝑥 𝑠.𝑡. 𝑣1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣{𝑉 𝑎𝑟[𝑣′𝑥], and ‖𝑣‖2 = 1}.

The second PC, is the same, only that it is required to be orthogonal to the first PC:

𝑣′
2𝑥 𝑠.𝑡. 𝑣2 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣{𝑉 𝑎𝑟[𝑣′𝑥], and ‖𝑣‖2 = 1, and 𝑣′𝑣1 = 0}.

The construction of the next PCs follows the same lines: find a linear transformation of the data that best separates
observations and is orthogonal to the previous PCs.

11.1.1.2 How Hard is the PCA Problem?

Estimating all the PCs in the data is well defined algebraically if 𝑛 > 𝑝, in which case 𝑝 PCs are computable. This is
the algebraic part of the problem, which is rather easy, and solved with SVD3.

If viewing PCA as inference tool, we may ask about its statistical performance. It turns out that PCA has the same
statistical difficulty as estimating a covariance matrix. As we already saw in the Multivariate Statistics Chapter (9),
estimating covariances is a hard task, we thus recommend: don’t trust your PCs if 𝑛 is not much larger than 𝑝, and
see the bibliographic notes for further details.

11.1.2 Dimensionality Reduction Preliminaries
Before presenting methods other than PCA, we need some terminology.

• Variable: A.k.a. dimension, or feature, or column. A vector of 𝑝 measurements in their raw scale.

• Feature Mapping: A.k.a. variable transformation, or data augmentation. A measurement in a new, trans-
formed, scale.

• Data: A.k.a. sample, observations. Will typically consist of 𝑛, vectors of dimension 𝑝. We typically denote the
data as a 𝑛 × 𝑝 matrix 𝑋.

• Data space: A.k.a. feature space. The space of all possible values of 𝑋. We denote with 𝒳.

• Network: A representation of the similarities (or dissimilarities) between the 𝑛 units in the data. We denote
with 𝒢, and may be encoded in an 𝑛 × 𝑛 matrix.

• Manifold: A generalization of a linear space, which is regular enough so that, locally, it has all the properties
of a linear space. We will denote an arbitrary manifold by ℳ, and by ℳ𝑞 a 𝑞 dimensional4 manifold.

• Embedding: Informally speaking: a “shape preserving” mapping (see figure below). We denote an embedding
of the data 𝑋, into a manifold ℳ by 𝑋 ↦ ℳ.

• Embedding Function: If the embedding is not only an algorithm, but rather, has a functional form represen-
tation, we call it an embedding function 𝑓 . Given such a function, we are not restricted to embeddings of the
original data, 𝑋, but may also embed new data points from 𝒳: 𝑓 ∶ 𝒳 ↦ ℳ.

• Generative Model: Known to statisticians as the sampling distribution. The assumed stochastic process
that generated the observed 𝑋.

There are many motivations for dimensionality reduction:

1. Scoring: Give each observation an interpretable, simple score (Hotelling’s motivation).

2. Latent structure: Recover unobservable information from indirect measurements. E.g: Blind signal recon-
struction, CT scan, cryo-electron microscopy, etc.

3. Signal to Noise: Denoise measurements before further processing like clustering, supervised learning, etc.

4. Compression: Save on RAM ,CPU, and communication when operating on a lower dimensional representation
of the data.

3https://en.wikipedia.org/wiki/Singular-value_decomposition
4You are probably used to thinking of the dimension of linear spaces. We will not rigorously define what is the dimension of a manifold,

but you may think of it as the number of free coordinates needed to navigate along the manifold.

131

https://en.wikipedia.org/wiki/Singular-value_decomposition

11.1. DIMENSIONALITY REDUCTION CHAPTER 11. UNSUPERVISED LEARNING

Figure 11.1: Various embedding algorithms. No embedding of the sphere to the plane is perfect. This is obviously not
new. Maps makers have known this for centuries!

11.1.3 Latent Variable Generative Approaches
All generative approaches to dimensionality reduction will include a set of latent/unobservable variables, which we
can try to recover from the observables 𝑋. The unobservable variables will typically have a lower dimension than the
observables, thus, dimension is reduced. We start with the simplest case of linear Factor Analysis.

11.1.3.1 Factor Analysis (FA)

FA originates from the psychometric literature. We thus revisit the IQ (actually g-factor5) Example 11.2:

Example 11.4. Assume 𝑛 respondents answer 𝑝 quantitative questions: 𝑥𝑖 ∈ ℝ𝑝, 𝑖 = 1, … , 𝑛. Also assume, their
responses are some linear function of a single personality attribute, 𝑠𝑖. We can think of 𝑠𝑖 as the subject’s “intelligence”.
We thus have

𝑥𝑖 = 𝑠𝑖𝐴 + 𝜀𝑖 (11.1)

And in matrix notation:

𝑋 = 𝑆𝐴 + 𝜀, (11.2)

where 𝐴 is the 𝑞 × 𝑝 matrix of factor loadings, and 𝑆 the 𝑛 × 𝑞 matrix of latent personality traits. In our particular
example where 𝑞 = 1, the problem is to recover the unobservable intelligence scores, 𝑠1, … , 𝑠𝑛, from the observed
answers 𝑋.

We may try to estimate 𝑆𝐴 by assuming some distribution on 𝑆 and 𝜀 and apply maximum likelihood. Under standard
assumptions on the distribution of 𝑆 and 𝜀, recovering 𝑆 from 𝑆𝐴 is still impossible as there are infinitely many such
solutions. In the statistical parlance we say the problem is non identifiable, and in the applied mathematics parlance
we say the problem is ill posed.

Remark. The non-uniqueness (non-identifiability) of the FA solution under variable rotation is never mentioned in the
PCA context. Why is this? This is because PCA and FA solve different problems. ̂𝑆 in PCA is well defined because
PCA does not seek a single 𝑆 but rather a sequence of 𝑆𝑞 with dimensions growing from 𝑞 = 1 to 𝑞 = 𝑝.

5https://en.wikipedia.org/wiki/G_factor_(psychometrics)

132

https://en.wikipedia.org/wiki/G_factor_(psychometrics)

CHAPTER 11. UNSUPERVISED LEARNING 11.1. DIMENSIONALITY REDUCTION

The FA terminology is slightly different than PCA:

• Factors: The unobserved attributes 𝑆. Akin to the principal components in PCA.

• Loading: The 𝐴 matrix; the contribution of each factor to the observed 𝑋.

• Rotation: An arbitrary orthogonal re-combination of the factors, 𝑆, and loadings, 𝐴, which changes the inter-
pretation of the result.

The FA literature offers several heuristics to “fix” the identifiability problem of FA. These are known as rotations, and
go under the names of Varimax, Quartimax, Equimax, Oblimin, Promax, and possibly others.

Because of their great similarity, FA is often confused with PCA. For a discussion of the similarities and dissimilarities,
see this excellent StackExchange Q6.

11.1.3.2 Independent Component Analysis (ICA)

Like FA, independent compoent analysis (ICA) is a family of latent space models, thus, a meta-method. It assumes the
observables are some function of the latent variables 𝑆. In many cases this function is assumed to be linear in 𝑆 so
that ICA is compared, if not confused, with PCA and even more so with FA.

The fundamental idea of ICA is that 𝑆 has a joint distribution of non-Gaussian, independent variables. This
independence assumption, solves the the non-uniqueness of 𝑆 in FA. As such, it can be thought of as a type of rotation
in FA. Then again, if the assumed distribution of 𝑆 is both non-Gaussian, and well justified, then ICA is well defined,
and more than just an arbitrary rotation of FA.

Being a generative model, estimation of 𝑆 can then be done using maximum likelihood, or other estimation principles.

ICA is a popular technique in signal processing, where 𝐴 is actually the signal, such as sound in Example 11.3.
Recovering 𝐴 is thus recovering the original signals mixing in the recorded 𝑋.

11.1.4 Purely Algorithmic Approaches
We now discuss dimensionality reduction approaches that are not stated via their generative model, but rather, directly
as an algorithm. This does not mean that they cannot be cast via their generative model, but rather they were not
motivated as such.

11.1.4.1 Multidimensional Scaling (MDS)

MDS can be thought of as a variation on PCA, that begins with the 𝑛 × 𝑛 graph of distances between data points
𝒢; in contrast to PCA which operates on the original 𝑛 × 𝑝 data 𝑋. The term graph is typically used in this context,
but saying network instead of graph is more accurate. This is because a graph encodes connections (topology) and
networks encode distances (geometry). Put differently, a graph can be encoded in a matrix of zeroes and ones, and a
network in a matrix of real numbers.

MDS aims at embedding 𝒢 into the plane, typically for visualization, while preserving the original distances. Basic
results in graph/network theory suggest that the geometry of a graph cannot be preserved when embedding it into
lower dimensions (Graham, 1988). The different types of MDSs, such as Classical MDS, and Sammon Mappings, differ
in the stress function that penalizes for the geometric distortion caused by the embedding.

11.1.4.2 Local Multidimensional Scaling (local-MDS)

Example 11.5. Consider data, 𝑋, of Cartesian coordinates on the globe. At short distances, constructing a dissimi-
larity graph, 𝑋 ↦ 𝒢 using Euclidean distances between Cartesian coordinates will capture the true distance between
points. At long distances, however, the Euclidean distances, are a very poor aproximation of the distance to travel
between points on the globe. A more extreme example is coordinates on the brain’s cerebral cortex. Being a highly
folded surface, the Euclidean distance between points is far from the true geodesic distances along the cortex’s surface7.

local-MDS is aimed at solving the case where Euclidean distances, implied by PCA and FA, are a bad measure of
distance. Instead of using the graph of Euclidean distances between any two points, 𝒢 = 𝑋′𝑋, local-MDS computes

6https://stats.stackexchange.com/questions/123063/is-there-any-good-reason-to-use-pca-instead-of-efa-also-can-pca-be-a-substitut
7Then again, it is possible that the true distances are the white matter fibers connecting going within the cortex, in which case, Euclidean

distances are more appropriate than geodesic distances. We put that aside for now.

133

https://stats.stackexchange.com/questions/123063/is-there-any-good-reason-to-use-pca-instead-of-efa-also-can-pca-be-a-substitut

11.1. DIMENSIONALITY REDUCTION CHAPTER 11. UNSUPERVISED LEARNING

𝒢 starting with the Euclidean distance between pairs of nearest points. Longer distances are solved as a shortest
path problem8. For instance, using the Floyd–Warshall algorithm9, which sums distances between closest points.
This is akin to computing the distance between Jerusalem to Beijing by computing Euclidean distances between
Jerusalem-Bagdad, Bagdad-Teheran, Teheran-Ashgabat, Ashgabat-Tashkent,and so on. Because the geographical-
distance10 between nearby cities is well approximated with the Euclidean distance, summing local distanes is better
than operating directly with the Euclidean distance between Jerusalem and Beijing.

After computing 𝒢, local-MDS ends with the usual MDS for the embedding. Because local-MDS ends with a regular
MDS, it can be seen as a non-linear embedding into a linear manifold ℳ.

11.1.4.3 Isometric Feature Mapping (IsoMap)

Like localMDS, only that the embedding, and not only the computation of the distances, is local.

11.1.4.4 Local Linear Embedding (LLE)

Very similar to IsoMap 11.1.4.3.

11.1.4.5 t-SNE

t-SNE is a recently popularized visualization method for high dimentional data. t-SNE starts by computing a proximity
graph, 𝒢. Computation of distances in the graph assumes a Gaussian decay of distances. Put differently: only the
nearest observations have a non-vanishing similarity. This stage is similar (in spirit) to the growing of 𝒢 in local-MDS
(11.1.4.2).

The second stage in t-SNE consists of finding a mapping to 2D (or 3D), which conserves distances in 𝒢. The uniquness
of t-SNE compared to other space embeddings is in the way distances are computed in the target 2D (or 3D) space.

11.1.4.6 Force Directed Graph Drawing

This class of algorithms start with a proximty graph 𝒢, and define a set of phisically motivated “forces”, operating
between data-points. Think of 𝒢 as governing a set of springs between data points. These springs have some steady-
state. The location of points in the embedding corrsponds to the steady state of this system of springs.

11.1.4.7 Kernel PCA (kPCA)

Returning to the BMI example (11.1); what if we want to learn scores that best separate between individuals, but
unlike PCA, are non-linear in the original features. Kernel PCA does just that, only that it restricts the possible
scores to simple functions of the original variables. These functions are known as the feature mapping. The feature
mappings resides in a function space called Reproducing Kernel Hilbert Space (RKHS), thus giving kPCA it’s name.
By defining a Kernel one defines the class of feature mappings implied by the algorithm. The magic of kPCA, like
other kernel methods, is that even if one chooses a kernel maps 𝑝 features, to an infinte dimensional space, the solution
to the kPCA problem has a closed form solution. This implies that theoreticians may study the statisticla properties
of kPCA, and solutions do not require solving optimization probelm in untractable function spaces.

11.1.4.8 Sparse PCA (sPCA)

sPCA is a type of PCA where the loadings are sparse. This means that PCs are linear combinations of a small number
of variables. This makes sPCA easier to interpret. Note that the varimax rotation in factor-analysis (11.1.3.1) has a
similar goal: create factors with the smallest number of contributing variables, so that they are easy to explain.

11.1.4.9 Sparse kernel PCA (skPCA)

A marriage between sPCA and kPCA: generate scores that are non linear transformations of a small number of
variables, each.

8https://en.wikipedia.org/wiki/Shortest_path_problem
9https://en.wikipedia.org/wiki/Floyd–Warshall_algorithm

10https://en.wikipedia.org/wiki/Geographical_distance

134

https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Floyd–Warshall_algorithm
https://en.wikipedia.org/wiki/Geographical_distance

CHAPTER 11. UNSUPERVISED LEARNING 11.1. DIMENSIONALITY REDUCTION

11.1.4.10 Correspondence Analysis (CA)

What if 𝑥 is not continuous, i.e., 𝒳 ≠ ℝ𝑝? We could dummy-code 𝑥, and then use plain PCA. A more principled view,
when 𝑥 is categorical, is known as Correspondence Analysis.

11.1.5 Dimensionality Reduction in R

11.1.5.1 PCA

We already saw the basics of PCA in 11.1.1. The fitting is done with the stats::prcomp function. The bi-plot is a
useful way to visualize the output of PCA.
library(devtools)
install_github("vqv/ggbiplot")
ggbiplot::ggbiplot(pca.1)

Murder

Assault

Rape

−2

−1

0

1

2

−2 −1 0 1

standardized PC1 (78.6% explained var.)

st
an

da
rd

iz
ed

 P
C

2
(1

5.
3%

 e
xp

la
in

ed
 v

ar
.)

Things to note:

• We used the ggbiplot::ggbiplot function (available from github, but not from CRAN), because it has a nicer
output than stats::biplot.

• The data is presented in the plane of PC1 and PC2.
• The bi-plot plots the loadings as arrows. The coordinates of the arrows belong to the weight of each of the

original variables in each PC. For example, the x-value of each arrow is the loadings on the PC1. Since the
weights of Murder, Assault, and Rape are almost the same, we conclude that PC1 captures the average crime
rate in each state.

The scree plot depicts the quality of the approximation of 𝑋 as 𝑞 grows, i.e., as we allow increase the dimension of our
new score. This is depicted using the proportion of variability in 𝑋 that is removed by each added PC. It is customary
to choose 𝑞 as the first PC that has a relative low contribution to the approximation of 𝑋. This is known as the “knee
heuristic”.

135

11.1. DIMENSIONALITY REDUCTION CHAPTER 11. UNSUPERVISED LEARNING

ggbiplot::ggscreeplot(pca.1)

0.2

0.4

0.6

0.8

1.0 1.5 2.0 2.5 3.0

principal component number

pr
op

or
tio

n
of

 e
xp

la
in

ed
 v

ar
ia

nc
e

The scree plot suggests a PC1 alone captures about 0.8 of the variability in crime levels. The next plot, is the classical
class-room introduction to PCA. It shows that states are indeed arranged along a single line in the “Assault-Murder”
plane. This line is PC1.

−1 0 1 2

−
1

0
1

2

Murder

A
ss

au
lt

PC 1
PC 2

More implementations of PCA:
FAST solutions:
gmodels::fast.prcomp()

More detail in output:
FactoMineR::PCA()

For flexibility in algorithms and visualization:
ade4::dudi.pca()

Another one...
amap::acp()

11.1.5.2 FA

fa.1 <- psych::principal(USArrests.1, nfactors = 2, rotate = "none")
fa.1

Principal Components Analysis

136

CHAPTER 11. UNSUPERVISED LEARNING 11.1. DIMENSIONALITY REDUCTION

Call: psych::principal(r = USArrests.1, nfactors = 2, rotate = "none")
Standardized loadings (pattern matrix) based upon correlation matrix
PC1 PC2 h2 u2 com
Murder 0.89 -0.36 0.93 0.0688 1.3
Assault 0.93 -0.14 0.89 0.1072 1.0
Rape 0.83 0.55 0.99 0.0073 1.7
##
PC1 PC2
SS loadings 2.36 0.46
Proportion Var 0.79 0.15
Cumulative Var 0.79 0.94
Proportion Explained 0.84 0.16
Cumulative Proportion 0.84 1.00
##
Mean item complexity = 1.4
Test of the hypothesis that 2 components are sufficient.
##
The root mean square of the residuals (RMSR) is 0.05
with the empirical chi square 0.87 with prob < NA
##
Fit based upon off diagonal values = 0.99
biplot(fa.1, labels = rownames(USArrests.1))

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

PC1

P
C

2

Alabama

Alaska

Arizona

California
Colorado

Connecticut
Florida

Georgia

Hawaii

Iowa

Louisiana

Maine Maryland

Michigan
Minnesota

Mississippi

Nevada

New Hampshire
New Mexico

North Carolina

North Dakota

Oregon

Rhode Island

South Carolina

South Dakota

Utah

Vermont

Washington

West Virginia

Wisconsin

Murder
Assault

Rape

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Biplot from fa

Numeric comparison with PCA:
fa.1$loadings

##
Loadings:
PC1 PC2
Murder 0.895 -0.361
Assault 0.934 -0.145
Rape 0.828 0.554
##
PC1 PC2
SS loadings 2.359 0.458

137

11.1. DIMENSIONALITY REDUCTION CHAPTER 11. UNSUPERVISED LEARNING

Proportion Var 0.786 0.153
Cumulative Var 0.786 0.939
pca.1$rotation

PC1 PC2 PC3
Murder -0.5826006 0.5339532 -0.6127565
Assault -0.6079818 0.2140236 0.7645600
Rape -0.5393836 -0.8179779 -0.1999436

Things to note:

• We perform FA with the psych::principal function. The Principal Component Analysis title is due to the
fact that FA without rotations, is equivalent to PCA.

• The first factor (fa.1$loadings) has different weights than the first PC (pca.1$rotation) because they have
different normalizations. They have the same interpretation however: all weights of the first component are
simiar, suggesting it merely captures the average crime rate.

Graphical model fans will like the following plot, where the contribution of each variable to each factor is encoded in
the width of the arrow.
qgraph::qgraph(fa.1$loadings)

Mrd

AssRap

12

Let’s add a rotation (Varimax), and note that the rotation has indeed changed the loadings of the variables, thus the
interpretation of the factors.
fa.2 <- psych::principal(USArrests.1, nfactors = 2, rotate = "varimax")

fa.2$loadings

##
Loadings:
RC1 RC2
Murder 0.930 0.257
Assault 0.829 0.453
Rape 0.321 0.943
##
RC1 RC2
SS loadings 1.656 1.160
Proportion Var 0.552 0.387
Cumulative Var 0.552 0.939

Things to note:

138

CHAPTER 11. UNSUPERVISED LEARNING 11.1. DIMENSIONALITY REDUCTION

• FA with a rotation is no longer equivalent to PCA.
• The rotated factors are now called rotated componentes, and reported in RC1 and RC2.

11.1.5.3 ICA
ica.1 <- fastICA::fastICA(USArrests.1, n.com=2) # Also performs projection pursuit

plot(ica.1$S)
abline(h=0, v=0, lty=2)
text(ica.1$S, pos = 4, labels = rownames(USArrests.1))

Compare with PCA (first two PCs):
arrows(x0 = ica.1$S[,1], y0 = ica.1$S[,2],

x1 = -pca.1$x[,2], y1 = pca.1$x[,1],
col='red', pch=19, cex=0.5)

−2 −1 0 1 2

−
2

−
1

0
1

ica.1$S[,1]

ic
a.

1$
S

[,2
]

Alabama
Alaska

Arizona

Arkansas

California

Colorado

Connecticut

Delaware

Florida

Georgia

HawaiiIdaho

Illinois

Indiana

Iowa

Kansas
Kentucky

Louisiana

Maine

Maryland

Massachusetts

Michigan

Minnesota

Mississippi

Missouri

Montana
Nebraska

Nevada

New Hampshire

New Jersey

New Mexico
New York

North Carolina

North Dakota

OhioOklahoma Oregon
PennsylvaniaRhode Island

South Carolina

South Dakota

TennesseeTexas

Utah

Vermont

Virginia

Washington

West Virginia

Wisconsin

Wyoming

Things to note:

• We fit ICA with fastICA::fastICA.
• The ICA components, like any other rotated components, are different than the PCA components.
• The fastICA algorithm has a stochastic component. So the solution will be different at each re-run (making

comparison to PCA harder).

11.1.5.4 MDS

Classical MDS compared to PCA.
We first need a dissimarity matrix/graph:
state.disimilarity <- dist(USArrests.1)

mds.1 <- cmdscale(state.disimilarity)

plot(mds.1, pch = 19)
abline(h=0, v=0, lty=2)
USArrests.2 <- USArrests[,1:2] %>% scale
text(mds.1, pos = 4, labels = rownames(USArrests.2), col = 'tomato')

Compare with PCA (first two PCs):
points(pca.1$x[,1:2], col='red', pch=19, cex=0.5)

139

11.1. DIMENSIONALITY REDUCTION CHAPTER 11. UNSUPERVISED LEARNING

−3 −2 −1 0 1 2

−
1.

5
−

0.
5

0.
5

1.
5

mds.1[,1]

m
ds

.1
[,2

]

Alabama

Alaska

Arizona

Arkansas

California
Colorado

Connecticut
DelawareFlorida

Georgia

Hawaii

Idaho

Illinois

Indiana IowaKansas

Kentucky

Louisiana

MaineMaryland
Massachusetts

Michigan Minnesota

Mississippi

Missouri

Montana
Nebraska

Nevada

New HampshireNew Jersey
New Mexico

New York

North Carolina

North Dakota
OhioOklahoma

Oregon

Pennsylvania

Rhode Island

South Carolina

South Dakota
TennesseeTexas

Utah

Vermont
Virginia

Washington

West Virginia

Wisconsin
Wyoming

Things to note:

• We first compute a dissimilarity graph with stats::dist(). See cluster::daisy for a wider variety of dissim-
ilarity measures.

• We learn the MDS embedding with stats::cmdscale.
• Embedding with the first two components of PCA is exactly the same as classical MDS with Euclidean distances.

Let’s try other strain functions for MDS, like Sammon’s stress, and compare it with PCA.
mds.2 <- MASS::sammon(state.disimilarity, trace = FALSE)
plot(mds.2$points, pch = 19)
abline(h=0, v=0, lty=2)
text(mds.2$points, pos = 4, labels = rownames(USArrests.2))

Compare with PCA (first two PCs):
arrows(
x0 = mds.2$points[,1], y0 = mds.2$points[,2],
x1 = pca.1$x[,1], y1 = pca.1$x[,2],
col='red', pch=19, cex=0.5)

−3 −2 −1 0 1 2

−
1.

5
−

0.
5

0.
5

1.
5

mds.2$points[,1]

m
ds

.2
$p

oi
nt

s[
,2

]

Alabama

Alaska

Arizona

Arkansas

CaliforniaColorado

Connecticut

Delaware

Florida

Georgia

Hawaii

IdahoIllinois
Indiana IowaKansas

Kentucky
Louisiana

Maine
Maryland

Massachusetts

Michigan
Minnesota

Mississippi

Missouri
MontanaNebraska

Nevada

New HampshireNew Jersey
New Mexico

New York

North Carolina

North Dakota
Ohio
Oklahoma

Oregon

Pennsylvania

Rhode Island
South Carolina

South Dakota

TennesseeTexas

Utah

Vermont
Virginia

Washington

West Virginia

Wisconsin

Wyoming

Things to note:

• MASS::sammon does the embedding.
• Sammon stress is different than PCA.

11.1.5.5 t-SNE

For a native R implementation: tsne package11. For an R wrapper for C libraries: Rtsne package12.
11https://cran.r-project.org/web/packages/tsne/
12https://github.com/jkrijthe/Rtsne

140

https://cran.r-project.org/web/packages/tsne/
https://github.com/jkrijthe/Rtsne

CHAPTER 11. UNSUPERVISED LEARNING 11.1. DIMENSIONALITY REDUCTION

The MNIST13 image bank of hand-written images has its own data format. The import process is adapted from David
Dalpiaz14:
show_digit <- function(arr784, col = gray(12:1 / 12), ...) {
image(matrix(as.matrix(arr784[-785]), nrow = 28)[, 28:1], col = col, ...)

}

load image files
load_image_file <- function(filename) {
ret <- list()
f <- file(filename, 'rb')
readBin(f, 'integer', n = 1, size = 4, endian = 'big')
n <- readBin(f, 'integer', n = 1, size = 4, endian = 'big')
nrow <- readBin(f, 'integer', n = 1, size = 4, endian = 'big')
ncol <- readBin(f, 'integer', n = 1, size = 4, endian = 'big')
x <- readBin(f, 'integer', n = n * nrow * ncol, size = 1, signed = FALSE)
close(f)
data.frame(matrix(x, ncol = nrow * ncol, byrow = TRUE))

}

load label files
load_label_file <- function(filename) {
f <- file(filename, 'rb')
readBin(f, 'integer', n = 1, size = 4, endian = 'big')
n <- readBin(f, 'integer', n = 1, size = 4, endian = 'big')
y <- readBin(f, 'integer', n = n, size = 1, signed = FALSE)
close(f)
y

}

load images
train <- load_image_file("data/train-images-idx3-ubyte")
test <- load_image_file("data/t10k-images-idx3-ubyte")

load labels
train$y = as.factor(load_label_file("data/train-labels-idx1-ubyte"))
test$y = as.factor(load_label_file("data/t10k-labels-idx1-ubyte"))

Inspect some digits:
par(mfrow=c(3,3))
ind <- sample(1:nrow(train),9)
for(i in 1:9){
show_digit(train[ind[i],], main=paste('Label= ',train$y[ind[i]], sep='')) }

13http://yann.lecun.com/exdb/mnist/
14https://gist.github.com/daviddalpiaz/ae62ae5ccd0bada4b9acd6dbc9008706

141

http://yann.lecun.com/exdb/mnist/
https://gist.github.com/daviddalpiaz/ae62ae5ccd0bada4b9acd6dbc9008706

11.1. DIMENSIONALITY REDUCTION CHAPTER 11. UNSUPERVISED LEARNING

0.0 0.4 0.8

0.
0

Label= 5

0.0 0.4 0.8

0.
0

Label= 7

0.0 0.4 0.8

0.
0

Label= 9

0.0 0.4 0.8

0.
0

Label= 5

0.0 0.4 0.8

0.
0

Label= 5

0.0 0.4 0.8

0.
0

Label= 0

0.0 0.4 0.8

0.
0

Label= 6

0.0 0.4 0.8

0.
0

Label= 4

0.0 0.4 0.8
0.

0

Label= 1

The analysis is adapted from Shruti Marwaha15.
numTrain <- 5e3 # Subset data for speed
rows <- sample(1:nrow(train), numTrain)
train.sub <- train[rows, -which(names(train)=='y')] %>% as.matrix
train.sub.labs <- train[rows, which(names(train)=='y')]

tsne <- Rtsne::Rtsne(train.sub, dims = 2, perplexity=30, verbose=FALSE, max_iter = 500)

colors <- rainbow(length(unique(train.sub.labs)))
names(colors) <- unique(train.sub.labs)
par(mgp=c(2.5,1,0))
par(mfrow=c(1,1))
plot(tsne$Y, t='n',

main="tSNE",
xlab="tSNE dimension 1",
ylab="tSNE dimension 2",
"cex.main"=2,
"cex.lab"=1.5)

text(tsne$Y, labels=train.sub.labs, col=colors[train.sub.labs])

−20 −10 0 10 20

−
30

−
10

0
10

20
30

tSNE

tSNE dimension 1

tS
N

E
 d

im
en

si
on

 2

83
8

5 4

2

6

6

2

48

1

6

5
5

4
9

5

0 0

3

2

1

22
8 72

3

1

8 7

5

3
4

9

6

9

5

2

1

95
9

0

1

3 8
9

5

4

1

0

1

0

2

7

9

8

0

1

2

3

3

5

2

400

2

78
3 8 4

1

0

1

4

43

0

8

6

8
9

9
4

5

2

4

7
2

0

4

5
9

7

4

8
4

0

2

5

7

9

2

9

8

788

9

7

6

7

6

7

9

9

2

9

4

6

4
5

9

72

3

7

8
4

1 1

8 9

9

2

3 9

7
9

2

4

8

6
6

8

1

7

3

0

2

4

1

0

7

8

7

0

2

4

1

8

0 4

8

6

5

8
7

3

9

3

1

7
7

6

0

9

2

0

3

7

4

0

9 9

5
0

1

0

5

9

8
9

2

6
9

2

8

6

5

6

9
4 7

9

2

9

9
9

5 58
8

2

4

0
0

8
8

4

0

7

6

4

7

1

9

8

0

3

3

6
0

4

7

4

93

9

2

6

8
3

3

6

3

8 7

1

8

5

9
5

8 7

8
8 9

0

1
2

8
3

2

1

9

5

2

3
2

5
4

7

5

1 1

5 4

8

1

3

8

1

0

1

6
66

49

3

7
9

7

9

793

5

6
0

8

2

4

4

72

7 7

8

4
8

0

8
5

4
4

46

55 48

1

5

0

5
4

0

4

9
9

0

2
3

4

7

3
5

8

1

55

1

8
7

9

5

44

0

2

5

6

1

7

1

5

44

2

0

5

6 60

3
5 9

6

9

3

1

4

2

8

7

1

9

1

5
9

8

1

7

6

1

7

3
33

0
8 0

0

8

1

3

72

9

1

0 6

3

6
0

8

2
1

4
6

1

2

8

0

7

0

3

2

1

8

9
8

2

3

5 49

1

2

6

1

2

9

2

0

3

6

7

9

8

2

1

83

6

9

3
5

51

0

7

6

8

98

0

5

9

9

2

3

4
0

7

0

1

77

3

6

5

7

5

9

6

6

9

5

3
2

1

4
5

4
7

2

0

8

4

3

0

1

4

9
6

8

3
8

6

9 4

8
2

8

0

4

5

1

5

0

6

6

8

1

8
5 43 9

3
7

2
8

3

8
44

4

1

53

2

3
7

1

6

6

3

1

6 4
9

9

3
5 9

6

3
3

7

0

1

8

6

3

0

7

3

7
8

95

8

0
6

9
3

9

0

4

8
78

0

73

4

8

2

45

3

2

0

3

6

7

4
9

8
6

2

2

1

2

4

8

3

2

0

1

3

4

22
2

7
2

6

5

0

983

9

0

2
2

0

1

7

5

8
3

4
45

7

5 4

7

1

5

7

7
2

1

0

1

3

2
8

45

9
2

6

55

7

3

2 2

5
5

0
0

0

9
5

1

6

7

5

9

2

6

2

8

1

7
8

7

5

1

7
7

0

0

2

3
9

3
3

7

8
7

4

1

5
9 4

3

9

1

7

45

6

1

9
8

6

9
3

6

1

9
5

90 6

8

4

2

5

1

5

1

3

0

3

33

9

2

5

7

0
6

6

8

0

3

1

0

8

7
6

3
2

1

5

3

9 4
8

6

1

4

8

4

11
1

2

0

3

1

3
7

70

3

6

5

2

4

3

2

0

2 1

66

1

4

3

0

9

2

1

8

0 6

2

8

0

5

0

1

8

3
8

1
1

5

8

3 4

9

8

5
9

0

5

7

9

0

1

0

2

2

1

0

1

3

5

6

9

1

9

8

1

6

1 1

8

9

6

7

0

9

0

1

5

88

2

3

11

4 9

1

3
3 3

7

6
6

2

5

7
3

5

1

4

9
7

5 5

0

1

0

9
3

2

4

4

7

5

3

6

3
55

11

8
4

9

2

95

6

8

2

0

7

1

3 7

1

7

3

9
83

6

2 92

5

0

3 4

3

1

0
6

8

3

8

3

6

1

6

9

6

2

0

3

7

3

1

4

2

0
0

28
7

6

6

5

6

7

1

49

1

4
7

6

5
5

7

6

2
3

5
3

9

3

2

8
83

0

0

2

5

1

5

33
3

4

60

9

2

8

8

8

9

7

46

5 9

7
2

6

4

2

9

6

2

66

3

7

9

6

3

8

7

0

1

6

1

8

4
4

5

8
7

33

2
2

6
5

8

6

3

55
3

1

0

43

79
22

5

8

9

7

96
6

1

9

2

9

4
8

0

2

8

9

1
2

3

5
3

6

2

9
7

12

0

5

1

88 7
8

5
6

8
5

8
2

0
6

2

1

6

1

9

7
2

9

4

9

1
11

7

1

3

2

7

2

3
9

1
7

66

1
1

5
9

2

6

2

0

2

9

4

4

5

2

6

6

7

2

9

2

4

49

0

3
7

8

2

3
2

8 8

3

0

44
9

33

6

6

9

7

5

2

9

1

4

1

8

9

7

6

4

6

7

95

8

1

5

0

9
7

5

7

12

8
4

0

2

4

5

7

0
0

5

8

0

1

3 83
5

6

2 7
4

5

8
3

3

8

1

5

8

5

0

2
8
1

8 4

98

3

6

1

4

6
6

6

77
8

2
4

5
33

0

8
94

5

0

3 9

0

8

4

7
7

0

1

8

1

6

2

7

4

1

3
8

1 1

2

93
9

0

6
0

0

5

0 6

4
5

7
1

9

0

4

2

6
4

4

2

4

2

1
1

1

6

5
8 9

1

8

8

1
1
1

3 9

1

1

4

7
5

6

9 9

5

833

3

9

6

4

1

2

3
5 4

4

43

11

3

1

8

4

6

6

4

2

49
0

5

11
2

9
7

5

6

3
2

8
3

6

77

7

4

53 5

0

5

9

0

8

3

1

94

1

6

0

4
4

1

6

2

3
33

9
4

77

8

2

4

8

9
3

4

3

1 1

7
3 2

0

2

0

7

0

7

9

3

0

9

7

1

4

2

3

0

1

3

38

3

4

9
93

0
0

1

33

5

8

2
2

5

0
6

5
3

7

45

9
9

0

3
4

9
4

7
2

9

6

4

9

7

3

0

4

0

2

4
9

2

9

93
3

6

8

9

8

0

4

4

8

8

5

2
7

1

7

4

8
53

2

3 9

2
7

1

8

6

2

4

4
4

1

0

7
9

2

7

6

8

0

1

5 4
3

7

0
3

5 5
4

6

8
3 8

3

0
0

9 7

2
4

6
0

12

4

7

5

7

5

0

22

4

4

0

2

9
9

7

6

4

5

7
3

0

8
3

0
4

9

0

8

4

1

5

2

6
5

5

0

5

7

5
4

4

0

6

7

6

9

5 48

3
8

4
6

1

0

93 7

9

2

8
8

4

2

1

5 4

3
7

2
2

7

6

3

5

8 7

5

3

7

4

2
7

0

3 8

2

3

2

5

3

2

8

2
7

4

2
2

6

9

4

4

4

6 4

1

8

2

9

4

2

9

1

7
2

6

3 3

0 6

9
8

8

2 1

9

9

2

3
2

3

6

9

2

8

4

2
1

5

4

8

7

3

1

8

7

0

2

5

3
8

6

4

0

6

3

8
28

1

5
8

6

1

4

8
5

5

4 7

6

2

8
9

0

7

66

8

6

7
8

2

4

9

9
5

6

3

2
1

7

0

9

5 9
4

1

4

00

9
7

0

2
7

9

8

0

8

5 9

0
0

6

1

2

7

93

76

8

4

0

33

5

7

5
5

9
5

4
9

1

3
8

1

8

6

4

7

0

4

1

2

4

9

2

3 7

6

6
0

8

6

5

6

5

5
6

4 7

558
0

1

4

2

5

0

1

9 4
9

3

2
1

7

6

9

6

5

4

7

4

5
3 5

8

3

9
8

9

3
5

5

3

7

8 9

0

4

2

4

7

0

3
5

4

7

2

60

0
0

8

1

3 8

4

1 12
1

6
6

8

8

7
78

7

0

11

8

5

3

5

8 7

0

45

4
3

7
2 2

6

1

7
44

8
9

3
7

6

1

9

6

4

3
2

4

4

4

1

9
4

6

2

4

6

1

8

4

2

4

0

5

6

1

9
9

8

9
6

7

9

2 77

1

2

1

0

3

1

6

7

9
4

0

5

0
5

3

5 9

7

5

8

2
2

4

5
3

9

6

2

3

3

8
8

7
8

7

2

9
3

3

0 6

9

5

2 1

5

6

5

9

7

4

7

0

7

9

8

2

83 8

1

4

7

6

8 8

1
1

7

1

0

3
8

4

8

2

5

1

0

1

3

6
6

8

6

9

4

2

6

2

1

0

2

9

7
3

5
5

0 6

1

0
9

4

1

983
28

5

9
8

4
4

5

6

7

7

0
0

2

1

6

8
8

3

2
8
8

5

2

6

6
5

55

8
8

5

8

6

5

6

9
5

0 9

9 7
8

6

4

0

8
7

49

2

95

8

1

4

3 75 9

2

0

1

7
83

8

3

7

5
53

3

0

8

1

6

4

2
7

5
5

60

2

6

2
8

40

8

3 8

1

0

3

9 4

0
6

2

7

4
83

4

8

5

7

5

4

6

9
4

79

1

8

9

7
8

2

4

6

4

7

5

3

4

8

7
3

2
1

6

5

8

0

7

4

7

8
9

8
9

5 4

0

7

0

0
9

3

7

95

6

9

5 3

1

6

2
2

5

0

1

5
3

6

2

6

7

2

5

6

2
7

4

2

1

7

0

1

0

4
6

6

7
4

4

83

1

3
5

9

9
3

1

9

4

8

1

0

8 8

9

1

9

9

8

2

6

6
6

1

3

1
12

8
9

7
1

1

0
0

788

0

4

9

3

9
3

6

1

7
7

8

4

2

0

3

5
9

98 5

3

5
8

6

2 7

8
7

7

1

2

6

8

1

8

4

6

7
7

1

3

4

1

4

0

83

1

4

2

1

3

0
4

33
73

9

7

49 49
53

9

3
8

5

0

7

5

3

6

2

1

0 4

3
9

9
5

8
4

3

7

1

3

9
3

6

1

4

1

6

4

00

95
7

7

1
6

2 9

0

9
4

5
9

3

2

5
4

7

5

0

1

7

0

3

0

1

8

3
93

83

0 0

5

6

6

122

8 8

0

9

2 2

5

2
2

6

7

4

7

00 6

4

5

9

0

1

9

1

4

7

5

8
3

8

7

4
0

45

7

2

6

6

1

6

1 1

5

1

2

3
3

5

4

72

0

9

4
8

0

1
2

0

5
6

6

4

5

7

2

6

4

8
8

5

0
6

6

1
1

0

7

9

1

7
2

4

8

6 4

6

7

2

5

79

2

6

1

3

00

5

6

1

3

4

7

9

0
6

2

8
3

8

1
2

1

7

7

1

7

2

5

7

6

4

7

0

6

3
9

6

4
4

2

1

5

1
7

6

9

2 2

9
7

3

9

9

1

3

4

0 6

3

7

0

9

660

8

11

4

3

0

7

6

5

9

5

1
7

11

3

4

8

6
0

4

1

3

9

8

9
4

0

2

4

2

6

9

4

7

0

6

1

2
8 8

5

1

4

4

0

7

4
0

1

3

6

8
3

2

3

1

6

9

2

1

5

0

3
2

5
3

2

5

2

83

0 76 6

1

7

0

7

45

6

4

1

2

9
4

6

4

0

8

7

3
8

6

5 4

7

4

4
8

5

7

6
6

2

600

9
2

0

2

1

8

7

6

6

1

000

7

0

5

7

9

1

7

0

4

2

4
5

7

5

33

2

4

5

3
6

6

8

9

7

5

5

6
0

3
9

2

9

9

3

7 77

5

8

9

9
5 8

1

9

5
9

8

9
7

4

2

3

2

6
6

2
1

3
4

3

9

9
3

6

3

6

45

2
2

3
3

8 8

1

0

5

11
2

3

8

9

4
4

6

5

2

3

2 1

5 55

994

2 2

7

5

1

4

1

8

0

3
7

1

3

1

7

0

2

9

7

7

6

3

6

4

6
4

0

3

2

5

3

1

3

6

93

0

1

6

1

6

1
1

3

5

8

9

0

8

1

7

5

11

93

4

3

2

4

9

1

1
3

3
3

9

8

6
6

3

4

3 33
3

6

9

0

1

9

4

2

4
6

0

4

9
00

22

5

8

2

8

8

2

9

1

2

9
5

5

5

6

988
7

4
9

3

66

2

9

0 8
4

9

9

1

6

1

4

4

1

6

58
6

7

1

9

1
2

7
2

3

2

9

3 9

7
3

5

9

8

1

9

0
9

0

4

5

8

0

2

4

1

0

4

2
1

6

1

7

5

77

4

2
7

8

2

4
3

2

8
4

0

1

8

6

7
97

9 4

8

6

4

11

8

1

8

4

8

0
0

3
2

4

2

9

6

2

9
5 4

6

2

9

4

66
9

7

2
1

3

2

9

2

7

9

9

0

1

8

5

6

3 9

9

0

4

1

4
5

5

7

1

4
3

1

9
9

2
2

3

9

4

5
9

6

9
53 99

3

2

1 1
1

3 7
8

9

8

5

3

8

9
4

1

7
8

3
8

8
3

7

8
9

1
2

4

7

8

1

8

4
45

6

8

1

0

9

7
8

2

43

0

7
9

8

1

5

1
1

8

6

3 8

2

0

2 7

5

0

3

2

3

7

9 4

2

0

2

5

4
4

4

2

3

7

1

9

5

4
3

9

6

1

0

8

7

0

9

7
4 9

1

2

3 8
9

7
9

1 1
2

8 5 9

8

0

9

6

2

1

7

9

3

4

2

4
5 4

988

49

2

4

98
9

0

3
8

4
2 7 7

4

1

0

9

2 7

3

2

9
6

7 7

9
5

2

9

1

3

1

7

1

8
8

5
38

66

9

1

3

1

4

2

5

0

1

9

9

3 8

0

8

0

8

0
9

60

8

6

1

4

83

7

6

4

9

3

4

7

3

9

3

7
7

0

1 1
2

1

8

5

0

1

6

6

5

6

8

9

95

0

9

88
8

1

7

5
45

7

45

3 9
8

5

3

9

6

1

4

2

6
4

7

3

2 2

5

1

0

6

2

3

6

8

9

7

3

4

3

8

1

86

3

2

6

7

4

5

2

9
3

3
4

2

6

3

6

3
8

1

7

4
3

4

1

5
3

6

1

3

1
2

1

5

7

0

9
5

1
2

8

1

3

1

7
2

4
5

3 3

7

4

7

0

1

3 7
3

4

2

3
7

7

6

95

2

3
9

2
9

6
3

2

6

9
5

7

7
7

4 4
33 9

9

0

8
8

2 3

2

8
3

5

7

4
8

9

2

8

0
0

9

7
2

0

1

12

1

9

2

7

5

0

7
8

8

4
9

6

4

4
6

1

8
7

1

6

2

0
9

4

7

2

6

2

6

2

1
2

9

4
5

0

4

6

9

0

9

2
1

3
5

2

6

5

7

2

9

4

1

7

72

7

2

6
0

3

2

4 7

4

3

7
1

5
3

6

44
5

6

3 8
7

5

7
9

5

2

5

7

6

4

3

6

9

22

99

2

3

8

0

4

5

0

9
3

8

5

1

7

6

8

8

3

9

40
4

4

6

7

2

8

1 1

0

9

0

1

0

8

7
7

9

2

9

7 4

7

1

7
7

3

2

3

9

3

6

3 4 9

2

8

3
4

1

0

5

0

111
1

7

1

5

1

2

6

7

0

8
8

0

9

1

6

4

2

9

33

3

6

6

2

8
4
4

2

5

1 1

9

8

6

6

4

8

3
9

0

4
5

2

6

7

6

1

4

1

2
1

73

3

0

4

2

3

0

3

8 7

7

3

7 7
2
2

66

4

3

0

53

8

7

1

8

9

95

2
3

2
3

1

7

9
4

0

4

9
0

798

2

6

8

0

2

8

4

3

6

2

3

90 6

9

6

1

5

3

0

1

8

83
7

56

3 8

66

1

3

7

1

33

0
0

8 7

5

60

1

90

2

8
3 4

7

6

1

53

0

7

5

3

2

3
7

8

2

9

3

1

4

7

3

7

6

5

7
8

5 5

6

2

5

7

1

5
3

0

8
8

7

3

2

6

8

8 7
9

1

5
8

6
0

8 9

0

4

73

0

3
4

0

77 73

60 0

5
5

2

1

0

2

4
3

2

3 9
4

4

5

1

5

1

8
3

4

1

9

1

3

3

7
3

4

9

6

1

40 0 0

79
9

8 777

6

3

6

3 4

7

0

1

3

3

6

2 2

5
6

7

3

22

0

1

22 9

59
8

43

8
7

3

1

9

5 4

2

3

4

7

7

1

7

8 9

1

8

12 7

5

0

3
3

6

5

0 0

8
2

5
3 8

6

9

1

9

9

1

2

4

3

7
2

0

7

6

4
9

8

9
3 8

7

6

1

9

77

0

9

2

1

6

9

4

8
9

6

7

6

5

7

49
0 9000

3 8
7

6

7
8

9
55

6

3
5

0 0

8
9

0

6

5
8

5

6
0

8
5

2

1

7

6

8

2
1

5
3

3

7

4

1

7
77

11

5

2

8

1
2

6

6

3
8

2 7

7

3

7

5

6

8
7

9

1

4

0

4

4

0

5

2

6

8

2

00

2

3 3

6

9

6

0

3

1

6

7

1

6

9

83

4
6

0

1

2

7
6

8
3 7

0
4

2

3

2

7

5

0

3

2

2

3

2
7

9

7

6

2

3 3

0

38

66

9

6

4
5

1

0

8

7

4

5

6

48

9

3

2

1

0

7

55
8

8

7

1

7

3

0

4
8 5

3

3
5

3

2
1

6

5

6
6

3

6
6
6

2

3

7

3

0

2

6
6

1

8

7

9
5

0
0

6

1

3

0
0

78

9
9

5
9

6

4

9

9

7
5

2

8
5

6

7

9

1

7

5
73

1

8

0

3

0

8

7
5

3 8
8 7

6

8

2
8

6

7

1

8

1

66

8

6

5
3

2

9

6

2

3
2

9
3

5
3

4

0
4

2

5

2

7

4
8

7
2

4

22

2

0

7

9
3

1

8
4

11

0

1 1

3
7

6

8

7

5

3

1

8

0

5

6
4

5
3

2

6

8

9

00
0

3
7

9

9

7
1

5

1

2

9
5

2

2

5
5

1

3

5

1

2

0

7

0

3

6

8

7

5
8

8

4

5

8

5

9

2
1

5
7

6

3
7

5

6 6

3 8

5

6 6

33

0

4

0

7

0
9

7

3

2
1

6

1
9

0

2

8

1

0

8

4

2

4
9

9
6

1

3

2

0

1

6

2

9

1
1

5

1

72

1

9

1 1

7

98

8

5

0

00

6

5
8

2

43

1

4
9

1

6

3

4

7

9

0

4

2

0

6
9

7
1

7 7

7

7

1

9

0 0

1

1

8

5
3

5

0

6

6

5

8

4
44

6

1

4

7

446

2

6
6

5

0

2

9
55

0

6

4

2

8

0

9

8 8

8

9

2

3

5

7

7

9

1

7

9

6

6

9

6

5

4

1

5

4

6 4

2

4
8

8

0 0

1

7

8
9

9

2

5

8

5

0
6

5

3 77

9

8

0

9

0

8

1

7

4

7

9

9

7

6

2

4

3

3

2
1

3
9

5

6
0 6

6

66

6

1 1

3 9

1

4
3

8

2

8

2

0 6

2 7

1

2

8
7

5 4

2

6

3
8

9

7

6

7
3

2

43

8

6
6

4

9

1

8
7

6

8

5

2

1

8
9

6
9

5

8

1

6
6

2
22

5

1

2 2

6

79

7

3

9

2

3

6

6

5

7

3

1

7

6

8

2

1

5

0

1

0

8

2

6
6

8

0

7
8

9
4

2

0

22
3

1

9

6 9
5

0

1

8

4

7
8

8

45

0
6

7

0

2
1

7

6
0

5

8

2

9
7

0

27

8

7

48 9

2

1

5

4

1

6

5
9

60

1

9
7

1

2

9
9

49

33 7

5

6

7

3
5

1
2

8

5

0 0

5

1

48 8

2

7

1

7

6

8

1

8

55 9

94

9

4

1

3

9

93
8

0

4

7

1

8

0

4

5
3

2

0

74

6
9

9 9

1

4

1
2

9

1

7
8

2

5

1

3

7
3

0

3

93

0

9
9

7 7

4

6

2
8

9

0

3
9

4

7

1

6

5
3

0

5

1

3 9

6

3

5

8
2

0

2

7

9

7

0

2
1

4

8

0

3

2

4

0

9

1

3

5

0

2

7

6

9

0

2

4

8

1

6 9

8

9
3

6

48

1

0

2
1

7
3

3

9

4

5

1

7

0

77

9

2
8

1

9

7

2

9

6

2

0

2

44

1

5

0

43

00

0

1

0

88

9

1

2
2

0

1

9

6

8

0

1

60
0

2
1

55

4

8

7

6

3

00

4

9

2 2

9

9

0

8

7

90

3

6

1

4
4

5 9

8

3

2

3
43

6

8
8

1

3 4

3

4

4

8
8

93

1

6

1

5

1

6

95

2

0

5
3

4

0

9

2

4

7

3
3 5 9

1
2

7
7

7

5 4
0

0

3

0

93

11
2

7

5

83
2

8

5

2

5
3

0

3

1

0

4

6

8 8
8

2

3

1

7
9

1 1

6

1

40

4

3

4

97

6

8 48

0 6

1

4

5

79

1 1

6

7

8
3

4
3

9

9

9

0
9

6

8

3
9

7
8

4

0

1

65

3

7

6

4

6

4

1

4

0

5

15https://rpubs.com/marwahsi/tnse

142

https://rpubs.com/marwahsi/tnse

CHAPTER 11. UNSUPERVISED LEARNING 11.1. DIMENSIONALITY REDUCTION

11.1.5.6 Force Embedding

I am unaware of an R implementation of force-embedding. Maybe because of the interactive nature of the algorithm,
that is not suited for R. Force embedding is much more natural to interactive GUIs. Here is a link for a fun javascript
implementation16.

11.1.5.7 Sparse PCA

Compute similarity graph
state.similarity <- MASS::cov.rob(USArrests.1)$cov

spca1 <- elasticnet::spca(state.similarity, K=2, type="Gram", sparse="penalty", trace=FALSE, para=c(0.06,0.16))
spca1$loadings

PC1 PC2
Murder -0.74771432 0
Assault -0.66162752 0
Rape -0.05632342 -1

Things to note:

• I used the elasticnet::spca function.
• Is the solutions sparse? Yes! PC2 depends on a single variable only: Murder.

11.1.5.8 Kernel PCA

library(kernlab)
kpc <- kpca(~.,data=as.data.frame(USArrests.1), kernel="rbfdot", kpar=list(sigma=0.2), features=2)

plot(rotated(kpc),
xlab="1st Principal Component",
ylab="2nd Principal Component")

abline(h=0, v=0, lty=2)
text(rotated(kpc), pos = 4, labels = rownames(USArrests.2))

−4 −2 0 2 4

−
4

−
2

0
2

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

Alabama

Alaska

Arizona

Arkansas

California

Colorado Connecticut

Delaware

Florida

Georgia
Hawaii

Idaho

Illinois

Indiana

Iowa

Kansas
Kentucky

Louisiana

Maine

Maryland

Massachusetts

Michigan Minnesota

Mississippi

Missouri

Montana

Nebraska

Nevada New Hampshire

New Jersey

New Mexico

New York

North Carolina

North Dakota

OhioOklahoma

Oregon
Pennsylvania

Rhode IslandSouth Carolina
South Dakota

TennesseeTexas Utah

Vermont

Virginia

Washington

West Virginia

Wisconsin

Wyoming

Things to note:

• We used kernlab::kpca for kPCA.
• rotated projects the data on its principal components (the above “scores”).
• See ?'kpca-class' or ?rotated for help on available utility functions.
• kernel= governs the class of feature mappings.
• kpar=list(sigma=0.2) provides parameters specific to each type of kernel. See ?kpca.
• features=2 is the number of principal components (scores) to learn.

16http://bl.ocks.org/eesur/be2abfb3155a38be4de4

143

http://bl.ocks.org/eesur/be2abfb3155a38be4de4

11.1. DIMENSIONALITY REDUCTION CHAPTER 11. UNSUPERVISED LEARNING

• You may notice the “Horseshoe” pattern of the kPCA embedding, a.k.a. “Croissants”, or the Guttman Effect.
The horseshoe is known phenomenon in low dimensional visualizations. See J. De Leeuw’s online paper17 for
more details.

11.1.5.9 Multiple Correspondence Analysis (MCA)

See Izenman (2008).

17https://rpubs.com/deleeuw/133786

144

https://rpubs.com/deleeuw/133786

CHAPTER 11. UNSUPERVISED LEARNING 11.2. CLUSTERING

11.2 Clustering
Example 11.6. Consider the tagging of your friends’ pictures on Facebook. If you tagged some pictures, Facebook
may try to use a supervised approach to automatically label photos. If you never tagged pictures, a supervised approach
is impossible. It is still possible, however, to group simiar pictures together.

Example 11.7. Consider the problem of spam detection. It would be nice if each user could label several thousands
emails, to apply a supervised learning approach to spam detection. This is an unrealistic demand, so a pre-clustering
stage is useful: the user only needs to label a couple dozens of (hopefully homogenous) clusters, before solving the
supervised learning problem.

In clustering problems, we seek to group observations that are similar.

There are many motivations for clustering:

1. Understanding: The most common use of clustering is probably as a an exploratory step, to identify homoge-
neous groups in the data18.

2. Dimensionality reduction: Clustering may be seen as a method for dimensionality reduction. Unlike the
approaches in the Dimensionality Reduction Section 11.1, it does not compress variables but rather observa-
tions. Each group of homogeneous observations may then be represented as a single prototypical observation of
the group.

3. Pre-Labelling: Clustering may be performed as a pre-processing step for supervised learning, when labeling
all the samples is impossible due to “budget” constraints, like in Example 11.7. This is sometimes known as
pre-clustering.

Clustering, like dimensionality reduction, may rely on some latent variable generative model, or on purely algorithmic
approaches.

11.2.1 Latent Variable Generative Approaches
11.2.1.1 Finite Mixture

Example 11.8. Consider the distribution of heights. Heights have a nice bell shaped distribution within each gender.
If genders have not been recorded, heights will be distributed like a mixture of males and females. The gender in this
example, is a latent variable taking 𝐾 = 2 levels: male and female.

A finite mixture is the marginal distribution of 𝐾 distinct classes, when the class variable is latent. This is useful for
clustering: If we know the distribution of the sub-populations being mixed, we may simply cluster each data point to
the most likely sub-group. Learning how is each sub-population disctirubted, when no class labels are available is no
easy task, but it is possible. For instance, by means of maximum likelihood.

11.2.2 Purely Algorithmic Approaches
11.2.2.1 K-Means

The K-means algorithm is possibly the most popular clustering algorithm. The goal behind K-means clustering is
finding a representative point for each of K clusters, and assign each data point to one of these clusters. As each cluster
has a representative point, this is also known as a prototype method. The clusters are defined so that they minimize
the average Euclidean distance between all points to the center of the cluster.

In K-means, the clusters are first defined, and then similarities computed. This is thus a top-down method.

K-means clustering requires the raw features 𝑋 as inputs, and not only a similarity graph, 𝒢. This is evident when
examining the algorithm below.

The k-means algorithm works as follows:

1. Choose the number of clusters 𝐾.
2. Arbitrarily assign points to clusters.
3. While clusters keep changing:

1. Compute the cluster centers as the average of their points.
18As such, you may wonder why clustering is part of machine learning at all? Maybe call it machine-assisted human-learning?

145

11.2. CLUSTERING CHAPTER 11. UNSUPERVISED LEARNING

2. Assign each point to its closest cluster center (in Euclidean distance).
4. Return cluster assignments and means.

Remark. If trained as a statistician, you may wonder- what population quantity is K-means actually estimating? The
estimand of K-means is known as the K principal points. Principal points are points which are self consistent, i.e.,
they are the mean of their neighbourhood.

11.2.2.2 K-Means++

K-means++ is a fast version of K-means thanks to a smart initialization.

11.2.2.3 K-Medoids

If a Euclidean distance is inappropriate for a particular set of variables, or that robustness to corrupt observations is
required, or that we wish to constrain the cluster centers to be actual observations, then the K-Medoids algorithm is an
adaptation of K-means that allows this. It is also known under the name partition around medoids (PAM) clustering,
suggesting _its relation to graph partitioning: a very important and well-studied problem in computer sciences.

The k-medoids algorithm works as follows.

1. Given a dissimilarity graph, 𝒢.
2. Choose the number of clusters 𝐾.
3. Arbitrarily assign points to clusters.
4. While clusters keep changing:

1. Within each cluster, set the center as the data point that minimizes the sum of distances to other points in
the cluster.

2. Assign each point to its closest cluster center.
5. Return Cluster assignments and centers.

Remark. If trained as a statistician, you may wonder- what population quantity is K-medoids actually estimating?
The estimand of K-medoids is the median of their neighbourhood. A delicate matter is that quantiles are not easy to
define for multivariate variables so that the “multivaraitre median”, may be a more subtle quantity than you may
think. See Small (1990).

11.2.2.4 Hirarchial Clustering

Hierarchical clustering algorithms take dissimilarity graphs as inputs. Hierarchical clustering is a class of greedy
graph-partitioning algorithms. Being hierarchical by design, they have the attractive property that the evolution of
the clustering can be presented with a dendogram, i.e., a tree plot. Another advantage of these methods is that they
do not require an a-priori choice of the number of cluster (𝐾).

Two main sub-classes of algorithms are agglomerative, and divisive.

Agglomerative clustering algorithms are bottom-up algorithm which build clusters by joining smaller clusters. To
decide which clusters are joined at each iteration some measure of distance between clusters is required:

• Single Linkage: Cluster distance is defined by the distance between the two closest members.
• Complete Linkage: Cluster distance is defined by the distance between the two farthest members.
• Group Average: Cluster distance is defined by the average distance between members.
• Group Median: Like Group Average, only using the median.

Divisive clustering algorithms are top-down algorithm which build clusters by splitting larger clusters.

11.2.3 Clustering in R
11.2.3.1 K-Means

The following code is an adaptation from David Hitchcock19.

19http://people.stat.sc.edu/Hitchcock/chapter6_R_examples.txt

146

http://people.stat.sc.edu/Hitchcock/chapter6_R_examples.txt

CHAPTER 11. UNSUPERVISED LEARNING 11.2. CLUSTERING

k <- 2
kmeans.1 <- stats::kmeans(USArrests.1, centers = k)
head(kmeans.1$cluster) # cluster asignments

Alabama Alaska Arizona Arkansas California Colorado
2 2 2 1 2 2
pairs(USArrests.1, panel=function(x,y) text(x,y,kmeans.1$cluster))

Murder

−
1.

5
0.

0
1.

5

2
2

2

1

2

2

1

1

2

2

1

1

2

1
1

1 1

2

1

2

1

2

1

2

2

11

2

1

1

2
2

2

1

1
11
1

1

2

1

22

1

1

11

1
1

1

−1 0 1 2

2

2

2

1

22

1
1

2
2

1
1

21

1
1 1

2

1

2

1

2

1 2

2

11

2

1

1

2
2

2

1

11

1

1
1

2

1

221

1

1
1

11
1

−1.5 −0.5 0.5 1.5

2
2

21 22

1
1

2
2

1
1

2
1

1

1

1

2

1

2

1

2

1

2

2
1
1

2

1

1

22
2

1

1 1
1

1
1

2

1

22

11

1

1
1

1

1

Assault

2

2

2

1

22

1
1

2
2

1
1

21

1
11

2

1

2

1

2

1 2

2

11

2

1

1

2
2

2

1

1 1

1

1
1

2

1

221

1

1
1

11
1

−
1

0
1

2

2
2

21 22

1
1

2
2

1
1

2
1

1

1

1

2

1

2

1

2

1

2

2
1
1

2

1

1

22
2

1

11
1

1
1

2

1

22

11

1

1
1
1

1

2
2

2

1

2

2

1

1

2

2

1

1

2

1
1

11

2

1

2

1

2

1

2

2

11

2

1

1

2
2

2

1

1
1 1

1

1

2

1

22

1

1

1 1

1
1

1

−1 0 1 2

−
1

0
1

2
Rape

Things to note:

• The stats::kmeans function does the clustering.
• The cluster assignment is given in the cluster element of the stats::kmeans output.
• The visual inspection confirms that similar states have been assigned to the same cluster.

11.2.3.2 K-Medoids

Start by growing a distance graph with dist and then partition using pam.
state.disimilarity <- dist(USArrests.1)
kmed.1 <- cluster::pam(x= state.disimilarity, k=2)
head(kmed.1$clustering)

Alabama Alaska Arizona Arkansas California Colorado
1 1 1 1 1 1
plot(pca.1$x[,1], pca.1$x[,2], xlab="PC 1", ylab="PC 2", type ='n', lwd=2)
text(pca.1$x[,1], pca.1$x[,2], labels=rownames(USArrests.1), cex=0.7, lwd=2, col=kmed.1$cluster)

−3 −2 −1 0 1 2

−
1.

5
−

0.
5

0.
5

1.
5

PC 1

P
C

 2

Alabama

Alaska

Arizona

Arkansas

California
Colorado

Connecticut
DelawareFlorida

Georgia

Hawaii

Idaho

Illinois

Indiana IowaKansas

Kentucky

Louisiana

MaineMaryland
Massachusetts

Michigan
Minnesota

Mississippi

Missouri

Montana
Nebraska

Nevada

New HampshireNew Jersey

New Mexico

New York

North Carolina

North Dakota
Ohio

Oklahoma

Oregon

Pennsylvania

Rhode Island

South Carolina

South Dakota
TennesseeTexas

Utah

Vermont
Virginia

Washington

West Virginia

Wisconsin

Wyoming

147

11.2. CLUSTERING CHAPTER 11. UNSUPERVISED LEARNING

Things to note:

• K-medoids starts with the computation of a dissimilarity graph, done by the dist function.
• The clustering is done by the cluster::pam function.
• Inspecting the output confirms that similar states have been assigned to the same cluster.
• Many other similarity measures can be found in proxy::dist().
• See cluster::clara() for a big-data implementation of PAM.

11.2.3.3 Hirarchial Clustering

We start with agglomerative clustering with single-linkage.
hirar.1 <- hclust(state.disimilarity, method='single')
plot(hirar.1, labels=rownames(USArrests.1), ylab="Distance")

F
lo

rid
a

N
or

th
 C

ar
ol

in
a

C
ol

or
ad

o
N

ev
ad

a
A

la
sk

a
C

al
ifo

rn
ia

D
el

aw
ar

e
A

riz
on

a
G

eo
rg

ia
Ill

in
oi

s
N

ew
 Y

or
k

M
ic

hi
ga

n
M

ar
yl

an
d

N
ew

 M
ex

ic
o

Te
nn

es
se

e
Te

xa
s

M
is

si
ss

ip
pi

A
la

ba
m

a
Lo

ui
si

an
a

S
ou

th
 C

ar
ol

in
a

M
is

so
ur

i
R

ho
de

 Is
la

nd
H

aw
ai

i
K

en
tu

ck
y

U
ta

h
O

re
go

n
W

as
hi

ng
to

n
W

es
t V

irg
in

ia
M

as
sa

ch
us

et
ts

A
rk

an
sa

s
W

yo
m

in
g

V
irg

in
ia

N
ew

 J
er

se
y

O
kl

ah
om

a
In

di
an

a
O

hi
o

N
eb

ra
sk

a
K

an
sa

s
M

on
ta

na
P

en
ns

yl
va

ni
a

Id
ah

o
M

in
ne

so
ta

C
on

ne
ct

ic
ut

S
ou

th
 D

ak
ot

a
N

or
th

 D
ak

ot
a

M
ai

ne
N

ew
 H

am
ps

hi
re

W
is

co
ns

in
Io

w
a

V
er

m
on

t0.
0

0.
6

1.
2

Cluster Dendrogram

hclust (*, "single")
state.disimilarity

D
is

ta
nc

e

Things to note:

• The clustering is done with the hclust function.
• We choose the single-linkage distance using the method='single' argument.
• We did not need to a-priori specify the number of clusters, 𝐾, since all the possible 𝐾’s are included in the

output tree.
• The plot function has a particular method for hclust class objects, and plots them as dendograms.

We try other types of linkages, to verify that the indeed affect the clustering. Starting with complete linkage.
hirar.2 <- hclust(state.disimilarity, method='complete')
plot(hirar.2, labels=rownames(USArrests.1), ylab="Distance")

148

CHAPTER 11. UNSUPERVISED LEARNING 11.2. CLUSTERING

linkage-1.bb

N
ew

 H
am

ps
hi

re
W

is
co

ns
in

Io
w

a
V

er
m

on
t

M
ai

ne
N

or
th

 D
ak

ot
a

H
aw

ai
i

M
as

sa
ch

us
et

ts
N

eb
ra

sk
a

K
an

sa
s

M
on

ta
na

P
en

ns
yl

va
ni

a
W

es
t V

irg
in

ia
M

in
ne

so
ta

Id
ah

o
C

on
ne

ct
ic

ut
S

ou
th

 D
ak

ot
a

U
ta

h
O

re
go

n
W

as
hi

ng
to

n
A

rk
an

sa
s

V
irg

in
ia

W
yo

m
in

g
N

ew
 J

er
se

y
O

kl
ah

om
a

K
en

tu
ck

y
In

di
an

a
O

hi
o

D
el

aw
ar

e
R

ho
de

 Is
la

nd
Ill

in
oi

s
N

ew
 Y

or
k

M
is

so
ur

i
Te

nn
es

se
e

Te
xa

s
C

ol
or

ad
o

N
ev

ad
a

A
la

sk
a

C
al

ifo
rn

ia
F

lo
rid

a
M

ic
hi

ga
n

A
riz

on
a

M
ar

yl
an

d
N

ew
 M

ex
ic

o
N

or
th

 C
ar

ol
in

a
G

eo
rg

ia
M

is
si

ss
ip

pi
A

la
ba

m
a

Lo
ui

si
an

a
S

ou
th

 C
ar

ol
in

a

0
2

4
6

Cluster Dendrogram

hclust (*, "complete")
state.disimilarity

D
is

ta
nc

e

Now with average linkage.
hirar.3 <- hclust(state.disimilarity, method='average')
plot(hirar.3, labels=rownames(USArrests.1), ylab="Distance")

linkage-1.bb

W
es

t V
irg

in
ia

N
or

th
 D

ak
ot

a
M

ai
ne

N
ew

 H
am

ps
hi

re
W

is
co

ns
in

Io
w

a
V

er
m

on
t

M
in

ne
so

ta
Id

ah
o

C
on

ne
ct

ic
ut

S
ou

th
 D

ak
ot

a
U

ta
h

O
re

go
n

W
as

hi
ng

to
n

H
aw

ai
i

K
en

tu
ck

y
M

as
sa

ch
us

et
ts

N
eb

ra
sk

a
K

an
sa

s
M

on
ta

na
P

en
ns

yl
va

ni
a

In
di

an
a

O
hi

o
A

rk
an

sa
s

W
yo

m
in

g
V

irg
in

ia
N

ew
 J

er
se

y
O

kl
ah

om
a

D
el

aw
ar

e
R

ho
de

 Is
la

nd
C

ol
or

ad
o

N
ev

ad
a

A
la

sk
a

C
al

ifo
rn

ia
F

lo
rid

a
A

riz
on

a
M

ic
hi

ga
n

M
ar

yl
an

d
N

ew
 M

ex
ic

o
M

is
so

ur
i

Te
nn

es
se

e
Te

xa
s

Ill
in

oi
s

N
ew

 Y
or

k
N

or
th

 C
ar

ol
in

a
G

eo
rg

ia
M

is
si

ss
ip

pi
A

la
ba

m
a

Lo
ui

si
an

a
S

ou
th

 C
ar

ol
in

a0.
0

2.
0

Cluster Dendrogram

hclust (*, "average")
state.disimilarity

D
is

ta
nc

e

If we know how many clusters we want, we can use stats::cuttree to get the class assignments.
cut.2.2 <- cutree(hirar.2, k=2)
head(cut.2.2)

Alabama Alaska Arizona Arkansas California Colorado
1 1 1 2 1 1

How to choose the number of clusters? Just like the Scree Plot above, we can use a “knee heuristic”. Because the
length of a tree’s branch is proportional to distances, long branches imply inhomogenous groups, while short branches
imply homogeneous groups. Here is a little simulation to demonstrate this:
n.groups <- 3 # set the number of groups
data.p <- 10 # set the dimension of the data
data.n <- 100 # set the number of samples

data with no separation between groups
the.data.10 <- mvtnorm::rmvnorm(n = data.n, mean = rep(0,data.p))

149

11.3. BIBLIOGRAPHIC NOTES CHAPTER 11. UNSUPERVISED LEARNING

data.disimilarity.10 <- dist(the.data.10)
hirar.10 <- hclust(data.disimilarity.10, method = "complete")
plot(hirar.10, ylab="Distance", main='All from the same group')

49 64 2
6 47

16 21
20

88
40 81

13
22 80

5
45

10
28 30

70
32

38 10
0

42
25 48

77
62 76

18 72 3
6 46
90

11 27 83
33

59 71
84 2 57

74 7 34
29

6 89
23 55 7

5 97 9
3 94 5
4 66
4 37

69 79
52 99

61
65 9 43 1
5

1 8
60

41 53
82

31 98 12 35
63 67 58 87 14

3 24
39 51

73
56

17 91 9
6

44 95
78 92

68 86
19 50 85

1
3

5
7

All from the same group

hclust (*, "complete")
data.disimilarity.10

D
is

ta
nc

e

data with strong separation between groups
the.data.11 <-the.data.10 +sample(c(0,10,20), data.n, replace=TRUE) # Shift each group
data.disimilarity.11 <- dist(the.data.11)
hirar.11 <- hclust(data.disimilarity.11, method = "complete")
plot(hirar.11, ylab="Distance", main=paste('Strong Separation Between',n.groups, 'Groups'))

61 72 90 36 80 12 67 4
1 57 4
2 52
5 45 32 95 7
3 91 59 83 1
5 63 25 70 62 76 2
0

40 81 7
5 97 9
4 6 88 2
6 49 8
2

43 65 39 51 71 89 2
7 35 3
1

17 50 44 78 1 8
4 37 58 29 2 84 4
6

16 13 22 56 85 38 10
0 28 64 1
8 77 19 47 60 98 9 99 1
1 33 23 55 5
4 66 8
7

14 3 24 9
3

69 79 2
1 48 10 30 53 7
4 7 34 9
6

92 68 86

0
20

40
60

Strong Separation Between 3 Groups

hclust (*, "complete")
data.disimilarity.11

D
is

ta
nc

e

11.3 Bibliographic Notes
An excellent reference on multivariate analysis (exploratory and inference) is Izenman (2008). For some theory of
PCA see my Dimensionality Reduction Class Notes20 and references therein. For a SUPERB, interactive, visual
demonstration of dimensionality reduction, see Christopher Olah’s21 blog. For t-SNE see the creator’s site: Laurens
van der Maaten22. For an excellent book on kernel methods (RKHS) see Shawe-Taylor and Cristianini (2004). For
more on everything, see Friedman et al. (2001). For a softer introduction (to everything), see James et al. (2013).

20https://github.com/johnros/dim_reduce/blob/master/dim_reduce.pdf
21http://colah.github.io/posts/2014-10-Visualizing-MNIST/
22https://lvdmaaten.github.io/tsne/

150

https://github.com/johnros/dim_reduce/blob/master/dim_reduce.pdf
http://colah.github.io/posts/2014-10-Visualizing-MNIST/
https://lvdmaaten.github.io/tsne/

CHAPTER 11. UNSUPERVISED LEARNING 11.4. PRACTICE YOURSELF

11.4 Practice Yourself
1. Generate data from multivariate Gaussian data with mvtnorm::rmvnorm(). Clearly this data has no structure

at all: it is a 𝑝-dimensional shapeless cloud of 𝑛 points.
1. Now try various dimensionality reduction algorithms such as PCA, MDS, kPCA, sPCA. How does the

sphere map to the plane? How does the mapping depend on 𝑛? And on 𝑝?
2. Map the data to a 𝑝-dimensional unit sphere by dividing each observation with its 𝑙2 norm: map2sphere <-

function(x) x/sqrt(sum(x^2)). Repeat the previous embeddings. Does this structureless data embeds
itself with structure?

3. Introduce artificial “structure” in the data and repeat the previous exercise. Use the Factor Analysis
generative model in Eq.((11.2)) to generate 𝑝 dimensional data along a one-dimensional line. Can you see
that observations arrange themselves along a single line in after your plane embedding?

2. Read about the Iris dataset using ?iris. “Forget” the Species column to make the problem unsupervised.
1. Make pairs of scatter plots. Can you identify the clusters in the data?
2. Perform K-means with centers=3. To extract the clustering results (cluster of each instance) use

kmeans$clusters. Now recall the Species column to verify your clustering.
3. Perform hierarchical clustering with hclust, method=”single” and method=”average”.Extract the clus-

tering results with cutree. Compare the accuracy of the two linkage methods.
4. Perform PCA on the data with prcomp function.
5. Print the Rotation matrix.
6. Print the PCA’s vectors with pca$x. These vectors are the new values for each instance in the dataset after

the rotation.
7. Let’s look at the first component (PC1) with plot(pca$x[,1]) (i.e reduce the dimensionality from 4 to 1

features). Can you identify visually the three clusters (species)?

8. Determine the color of the points to be the truth species with col=iris$Species.

See DataCap’s Unsupervised Learning in R23, Cluster Analysis in R24, Dimensionality Reduction in R25, and Advanced
Dimensionality Reduction in R26 for more self practice.

23https://www.datacamp.com/courses/unsupervised-learning-in-r
24https://www.datacamp.com/courses/cluster-analysis-in-r
25https://www.datacamp.com/courses/dimensionality-reduction-in-r
26https://www.datacamp.com/courses/advanced-dimensionality-reduction-in-r

151

https://www.datacamp.com/courses/unsupervised-learning-in-r
https://www.datacamp.com/courses/cluster-analysis-in-r
https://www.datacamp.com/courses/dimensionality-reduction-in-r
https://www.datacamp.com/courses/advanced-dimensionality-reduction-in-r

11.4. PRACTICE YOURSELF CHAPTER 11. UNSUPERVISED LEARNING

152

Chapter 12

Plotting

Whether you are doing EDA, or preparing your results for publication, you need plots. R has many plotting mech-
anisms, allowing the user a tremendous amount of flexibility, while abstracting away a lot of the tedious details. To
be concrete, many of the plots in R are simply impossible to produce with Excel, SPSS, or SAS, and would take a
tremendous amount of work to produce with Python, Java and lower level programming languages.

In this text, we will focus on two plotting packages. The basic graphics package, distributed with the base R
distribution, and the ggplot2 package.

Before going into the details of the plotting packages, we start with some philosophy. The graphics package originates
from the mainframe days. Computers had no graphical interface, and the output of the plot was immediately sent to
a printer. Once a plot has been produced with the graphics package, just like a printed output, it cannot be queried
nor changed, except for further additions.

The philosophy of R is that everyting is an object. The graphics package does not adhere to this philosophy, and
indeed it was soon augmented with the grid package (R Core Team, 2016), that treats plots as objects. grid is a low
level graphics interface, and users may be more familiar with the lattice package built upon it (Sarkar, 2008).

lattice is very powerful, but soon enough, it was overtaken in popularity by the ggplot2 package (Wickham, 2009).
ggplot2 was the PhD project of Hadley Wickham1, a name to remember… Two fundamental ideas underlay ggplot2:
(i) everything is an object, and (ii), plots can be described by a simple grammar, i.e., a language to describe the
building blocks of the plot. The grammar in ggplot2 are is the one stated by Wilkinson (2006). The objects and
grammar of ggplot2 have later evolved to allow more complicated plotting and in particular, interactive plotting.

Interactive plotting is a very important feature for EDA, and reporting. The major leap in interactive plotting was
made possible by the advancement of web technologies, such as JavaScript and D3.JS2. Why is this? Because an
interactive plot, or report, can be seen as a web-site. Building upon the capabilities of JavaScript and your web
browser to provide the interactivity, greatly facilitates the development of such plots, as the programmer can rely on
the web-browsers capabilities for interactivity.

12.1 The graphics System
The R code from the Basics Chapter 3 is a demonstration of the graphics package and plotting system. We make a
quick review of the basics.

12.1.1 Using Existing Plotting Functions
12.1.1.1 Scatter Plot

A simple scatter plot.
attach(trees)
plot(Girth ~ Height)

1http://hadley.nz/
2https://en.wikipedia.org/wiki/D3.js

153

http://hadley.nz/
https://en.wikipedia.org/wiki/D3.js

12.1. THE GRAPHICS SYSTEM CHAPTER 12. PLOTTING

65 70 75 80 85

8
10

12
14

16
18

20

Height

G
ir

th

Various types of plots.
par.old <- par(no.readonly = TRUE)
par(mfrow=c(2,3))
plot(Girth, type='h', main="type='h'")
plot(Girth, type='o', main="type='o'")
plot(Girth, type='l', main="type='l'")
plot(Girth, type='s', main="type='s'")
plot(Girth, type='b', main="type='b'")
plot(Girth, type='p', main="type='p'")

0 10 20 30

8
12

16
20

type='h'

Index

G
ir

th

0 10 20 30

8
12

16
20

type='o'

Index

G
ir

th

0 10 20 30

8
12

16
20

type='l'

Index

G
ir

th

0 10 20 30

8
12

16
20

type='s'

Index

G
ir

th

0 10 20 30

8
12

16
20

type='b'

Index

G
ir

th

0 10 20 30

8
12

16
20

type='p'

Index

G
ir

th

par(par.old)

Things to note:

• The par command controls the plotting parameters. mfrow=c(2,3) is used to produce a matrix of plots with 2
rows and 3 columns.

• The par.old object saves the original plotting setting. It is restored after plotting using par(par.old).
• The type argument controls the type of plot.
• The main argument controls the title.
• See ?plot and ?par for more options.

Control the plotting characters with the pch argument, and size with the cex argument.

154

CHAPTER 12. PLOTTING 12.1. THE GRAPHICS SYSTEM

plot(Girth, pch='+', cex=3)

+++
++++++++++++

++++++++
++++

+++
+

0 5 10 15 20 25 30

8
10

12
14

16
18

20

Index

G
ir

th

Control the line’s type with lty argument, and width with lwd.
par(mfrow=c(2,3))
plot(Girth, type='l', lty=1, lwd=2)
plot(Girth, type='l', lty=2, lwd=2)
plot(Girth, type='l', lty=3, lwd=2)
plot(Girth, type='l', lty=4, lwd=2)
plot(Girth, type='l', lty=5, lwd=2)
plot(Girth, type='l', lty=6, lwd=2)

0 10 20 30

8
12

16
20

Index

G
ir

th

0 10 20 30

8
12

16
20

Index

G
ir

th

0 10 20 30

8
12

16
20

Index

G
ir

th

0 10 20 30

8
12

16
20

Index

G
ir

th

0 10 20 30

8
12

16
20

Index

G
ir

th

0 10 20 30

8
12

16
20

Index

G
ir

th

Add line by slope and intercept with abline.
plot(Girth)
abline(v=14, col='red') # vertical line at 14.
abline(h=9, lty=4,lwd=4, col='pink') # horizontal line at 9.
abline(a = 0, b=1) # linear line with intercept a=0, and slope b=1.

155

12.1. THE GRAPHICS SYSTEM CHAPTER 12. PLOTTING

0 5 10 15 20 25 30

8
10

12
14

16
18

20

Index

G
ir

th

plot(Girth)
points(x=1:30, y=rep(12,30), cex=0.5, col='darkblue')
lines(x=rep(c(5,10), 7), y=7:20, lty=2)
lines(x=rep(c(5,10), 7)+2, y=7:20, lty=2)
lines(x=rep(c(5,10), 7)+4, y=7:20, lty=2 , col='darkgreen')
lines(x=rep(c(5,10), 7)+6, y=7:20, lty=4 , col='brown', lwd=4)

0 5 10 15 20 25 30

8
10

12
14

16
18

20

Index

G
ir

th

Things to note:

• points adds points on an existing plot.
• lines adds lines on an existing plot.
• col controls the color of the element. It takes names or numbers as argument.
• cex controls the scale of the element. Defaults to cex=1.

Add other elements.
plot(Girth)
segments(x0=rep(c(5,10), 7), y0=7:20, x1=rep(c(5,10), 7)+2, y1=(7:20)+2) # line segments
arrows(x0=13,y0=16,x1=16,y1=17) # arrows
rect(xleft=10, ybottom=12, xright=12, ytop=16) # rectangle
polygon(x=c(10,11,12,11.5,10.5), y=c(9,9.5,10,10.5,9.8), col='grey') # polygon
title(main='This plot makes no sense', sub='Or does it?')
mtext('Printing in the margins', side=2) # math text
mtext(expression(alpha==log(f[i])), side=4)

156

CHAPTER 12. PLOTTING 12.1. THE GRAPHICS SYSTEM

0 5 10 15 20 25 30

8
10

12
14

16
18

20

Index

G
ir

th
This plot makes no sense

Or does it?

P
rin

tin
g

in
 th

e
m

ar
gi

ns

α
=

lo
g(

f i)
Things to note:

• The following functions add the elements they are named after: segments, arrows, rect, polygon, title.
• mtext adds mathematical text, which needs to be wrapped in expression(). For more information for mathe-

matical annotation see ?plotmath.

Add a legend.
plot(Girth, pch='G',ylim=c(8,77), xlab='Tree number', ylab='', type='b', col='blue')
points(Volume, pch='V', type='b', col='red')
legend(x=2, y=70, legend=c('Girth', 'Volume'), pch=c('G','V'), col=c('blue','red'), bg='grey')

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

0 5 10 15 20 25 30

10
30

50
70

Tree number

VVV
VVV

VV
VV

VVVVVV

V
VVV

VV
VV

V

VVV
VV

V

G
V

Girth
Volume

Adjusting Axes with xlim and ylim.
plot(Girth, xlim=c(0,15), ylim=c(8,12))

157

12.1. THE GRAPHICS SYSTEM CHAPTER 12. PLOTTING

0 5 10 15

8
9

10
11

12

Index

G
ir

th

Use layout for complicated plot layouts.
A<-matrix(c(1,1,2,3,4,4,5,6), byrow=TRUE, ncol=2)
layout(A,heights=c(1/14,6/14,1/14,6/14))

oma.saved <- par("oma")
par(oma = rep.int(0, 4))
par(oma = oma.saved)
o.par <- par(mar = rep.int(0, 4))
for (i in seq_len(6)) {

plot.new()
box()
text(0.5, 0.5, paste('Box no.',i), cex=3)

}

Box no. 1

Box no. 2 Box no. 3

Box no. 4

Box no. 5 Box no. 6

Always detach.
detach(trees)

12.1.2 Exporting a Plot
The pipeline for exporting graphics is similar to the export of data. Instead of the write.table or save functions, we
will use the pdf, tiff, png, functions. Depending on the type of desired output.

Check and set the working directory.
getwd()
setwd("/tmp/")

158

CHAPTER 12. PLOTTING 12.1. THE GRAPHICS SYSTEM

Export tiff.
tiff(filename='graphicExample.tiff')
plot(rnorm(100))
dev.off()

Things to note:

• The tiff function tells R to open a .tiff file, and write the output of a plot.
• Only a single (the last) plot is saved.
• dev.off to close the tiff device, and return the plotting to the R console (or RStudio).

If you want to produce several plots, you can use a counter in the file’s name. The counter uses the printf3 format
string.
tiff(filename='graphicExample%d.tiff') #Creates a sequence of files
plot(rnorm(100))
boxplot(rnorm(100))
hist(rnorm(100))
dev.off()

To see the list of all open devices use dev.list(). To close all device, (not only the last one), use graphics.off().

See ?pdf and ?jpeg for more info.

12.1.3 Fancy graphics Examples
12.1.3.1 Line Graph

x = 1995:2005
y = c(81.1, 83.1, 84.3, 85.2, 85.4, 86.5, 88.3, 88.6, 90.8, 91.1, 91.3)
plot.new()
plot.window(xlim = range(x), ylim = range(y))
abline(h = -4:4, v = -4:4, col = "lightgrey")
lines(x, y, lwd = 2)
title(main = "A Line Graph Example",

xlab = "Time",
ylab = "Quality of R Graphics")

axis(1)
axis(2)
box()

A Line Graph Example

Time

Q
ua

lit
y

of
 R

 G
ra

ph
ic

s

1996 1998 2000 2002 2004

82
84

86
88

90

3https://en.wikipedia.org/wiki/Printf_format_string

159

https://en.wikipedia.org/wiki/Printf_format_string

12.1. THE GRAPHICS SYSTEM CHAPTER 12. PLOTTING

Things to note:

• plot.new creates a new, empty, plotting device.
• plot.window determines the limits of the plotting region.
• axis adds the axes, and box the framing box.
• The rest of the elements, you already know.

12.1.3.2 Rosette

n = 17
theta = seq(0, 2 * pi, length = n + 1)[1:n]
x = sin(theta)
y = cos(theta)
v1 = rep(1:n, n)
v2 = rep(1:n, rep(n, n))
plot.new()
plot.window(xlim = c(-1, 1), ylim = c(-1, 1), asp = 1)
segments(x[v1], y[v1], x[v2], y[v2])
box()

12.1.3.3 Arrows

plot.new()
plot.window(xlim = c(0, 1), ylim = c(0, 1))
arrows(.05, .075, .45, .9, code = 1)
arrows(.55, .9, .95, .075, code = 2)
arrows(.1, 0, .9, 0, code = 3)
text(.5, 1, "A", cex = 1.5)
text(0, 0, "B", cex = 1.5)
text(1, 0, "C", cex = 1.5)

A

B C
160

CHAPTER 12. PLOTTING 12.1. THE GRAPHICS SYSTEM

12.1.3.4 Arrows as error bars

x = 1:10
y = runif(10) + rep(c(5, 6.5), c(5, 5))
yl = y - 0.25 - runif(10)/3
yu = y + 0.25 + runif(10)/3
plot.new()
plot.window(xlim = c(0.5, 10.5), ylim = range(yl, yu))
arrows(x, yl, x, yu, code = 3, angle = 90, length = .125)
points(x, y, pch = 19, cex = 1.5)
axis(1, at = 1:10, labels = LETTERS[1:10])
axis(2, las = 1)
box()

A B C D E F G H I J

5.0

5.5

6.0

6.5

7.0

7.5

12.1.3.5 Histogram

A histogram is nothing but a bunch of rectangle elements.
plot.new()
plot.window(xlim = c(0, 5), ylim = c(0, 10))
rect(0:4, 0, 1:5, c(7, 8, 4, 3), col = "lightblue")
axis(1)
axis(2, las = 1)

0 1 2 3 4 5

0

2

4

6

8

10

12.1.3.5.1 Spiral Squares
plot.new()
plot.window(xlim = c(-1, 1), ylim = c(-1, 1), asp = 1)
x = c(-1, 1, 1, -1)
y = c(1, 1, -1, -1)
polygon(x, y, col = "cornsilk")

161

12.1. THE GRAPHICS SYSTEM CHAPTER 12. PLOTTING

vertex1 = c(1, 2, 3, 4)
vertex2 = c(2, 3, 4, 1)
for(i in 1:50) {

x = 0.9 * x[vertex1] + 0.1 * x[vertex2]
y = 0.9 * y[vertex1] + 0.1 * y[vertex2]
polygon(x, y, col = "cornsilk")

}

12.1.3.6 Circles

Circles are just dense polygons.
R = 1
xc = 0
yc = 0
n = 72
t = seq(0, 2 * pi, length = n)[1:(n-1)]
x = xc + R * cos(t)
y = yc + R * sin(t)
plot.new()
plot.window(xlim = range(x), ylim = range(y), asp = 1)
polygon(x, y, col = "lightblue", border = "navyblue")

12.1.3.7 Spiral

k = 5
n = k * 72
theta = seq(0, k * 2 * pi, length = n)
R = .98^(1:n - 1)
x = R * cos(theta)
y = R * sin(theta)
plot.new()

162

CHAPTER 12. PLOTTING 12.2. THE GGPLOT2 SYSTEM

plot.window(xlim = range(x), ylim = range(y), asp = 1)
lines(x, y)

12.2 The ggplot2 System
The philosophy of ggplot2 is very different from the graphics device. Recall, in ggplot2, a plot is a object. It can
be queried, it can be changed, and among other things, it can be plotted.

ggplot2 provides a convenience function for many plots: qplot. We take a non-typical approach by ignoring qplot,
and presenting the fundamental building blocks. Once the building blocks have been understood, mastering qplot
will be easy.

The following is taken from UCLA’s idre4.

A ggplot2 object will have the following elements:

• Data the data frame holding the data to be plotted.
• Aes defines the mapping between variables to their visualization.
• Geoms are the objects/shapes you add as layers to your graph.
• Stats are statistical transformations when you are not plotting the raw data, such as the mean or confidence

intervals.
• Faceting splits the data into subsets to create multiple variations of the same graph (paneling).

The nlme::Milk dataset has the protein level of various cows, at various times, with various diets.
library(nlme)
data(Milk)
head(Milk)

Grouped Data: protein ~ Time | Cow
protein Time Cow Diet
1 3.63 1 B01 barley
2 3.57 2 B01 barley
3 3.47 3 B01 barley
4 3.65 4 B01 barley
5 3.89 5 B01 barley
6 3.73 6 B01 barley
library(ggplot2)
ggplot(data = Milk, aes(x=Time, y=protein)) +
geom_point()

4http://www.ats.ucla.edu/stat/r/seminars/ggplot2_intro/ggplot2_intro.htm

163

http://www.ats.ucla.edu/stat/r/seminars/ggplot2_intro/ggplot2_intro.htm

12.2. THE GGPLOT2 SYSTEM CHAPTER 12. PLOTTING

2.5

3.0

3.5

4.0

4.5

5 10 15

Time

pr
ot

ei
n

Things to note:

• The ggplot function is the constructor of the ggplot2 object. If the object is not assigned, it is plotted.
• The aes argument tells R that the Time variable in the Milk data is the x axis, and protein is y.
• The geom_point defines the Geom, i.e., it tells R to plot the points as they are (and not lines, histograms, etc.).
• The ggplot2 object is build by compounding its various elements separated by the + operator.
• All the variables that we will need are assumed to be in the Milk data frame. This means that (a) the data

needs to be a data frame (not a matrix for instance), and (b) we will not be able to use variables that are not
in the Milk data frame.

Let’s add some color.
ggplot(data = Milk, aes(x=Time, y=protein)) +
geom_point(aes(color=Diet))

2.5

3.0

3.5

4.0

4.5

5 10 15

Time

pr
ot

ei
n

Diet

barley

barley+lupins

lupins

The color argument tells R to use the variable Diet as the coloring. A legend is added by default. If we wanted a
fixed color, and not a variable dependent color, color would have been put outside the aes function.
ggplot(data = Milk, aes(x=Time, y=protein)) +
geom_point(color="green")

164

CHAPTER 12. PLOTTING 12.2. THE GGPLOT2 SYSTEM

2.5

3.0

3.5

4.0

4.5

5 10 15

Time

pr
ot

ei
n

Let’s save the ggplot2 object so we can reuse it. Notice it is not plotted.
p <- ggplot(data = Milk, aes(x=Time, y=protein)) +
geom_point()

We can change^{In the Object-Oriented Programming lingo, this is known as mutating5} existing plots using the +
operator. Here, we add a smoothing line to the plot p.
p + geom_smooth(method = 'gam')

2.5

3.0

3.5

4.0

4.5

5 10 15

Time

pr
ot

ei
n

Things to note:

• The smoothing line is a layer added with the geom_smooth() function.
• Lacking arguments of its own, the new layer will inherit the aes of the original object, x and y variables in

particular.

To split the plot along some variable, we use faceting, done with the facet_wrap function.
p + facet_wrap(~Diet)

5https://en.wikipedia.org/wiki/Immutable_object

165

https://en.wikipedia.org/wiki/Immutable_object

12.2. THE GGPLOT2 SYSTEM CHAPTER 12. PLOTTING

barley barley+lupins lupins

5 10 15 5 10 15 5 10 15

2.5

3.0

3.5

4.0

4.5

Time

pr
ot

ei
n

Instead of faceting, we can add a layer of the mean of each Diet subgroup, connected by lines.
p + stat_summary(aes(color=Diet), fun.y="mean", geom="line")

2.5

3.0

3.5

4.0

4.5

5 10 15

Time

pr
ot

ei
n

Diet

barley

barley+lupins

lupins

Things to note:

• stat_summary adds a statistical summary.
• The summary is applied along Diet subgroups, because of the color=Diet aesthetic, which has already split the

data.
• The summary to be applied is the mean, because of fun.y="mean".
• The group means are connected by lines, because of the geom="line" argument.

What layers can be added using the geoms family of functions?

• geom_bar: bars with bases on the x-axis.
• geom_boxplot: boxes-and-whiskers.
• geom_errorbar: T-shaped error bars.
• geom_histogram: histogram.
• geom_line: lines.
• geom_point: points (scatterplot).
• geom_ribbon: bands spanning y-values across a range of x-values.
• geom_smooth: smoothed conditional means (e.g. loess smooth).

To demonstrate the layers added with the geoms_* functions, we start with a histogram.

166

CHAPTER 12. PLOTTING 12.2. THE GGPLOT2 SYSTEM

pro <- ggplot(Milk, aes(x=protein))
pro + geom_histogram(bins=30)

0

25

50

75

100

125

2.5 3.0 3.5 4.0 4.5

protein

co
un

t

A bar plot.
ggplot(Milk, aes(x=Diet)) +
geom_bar()

0

100

200

300

400

barley barley+lupins lupins

Diet

co
un

t

A scatter plot.
tp <- ggplot(Milk, aes(x=Time, y=protein))
tp + geom_point()

167

12.2. THE GGPLOT2 SYSTEM CHAPTER 12. PLOTTING

2.5

3.0

3.5

4.0

4.5

5 10 15

Time

pr
ot

ei
n

A smooth regression plot, reusing the tp object.
tp + geom_smooth(method='gam')

3.35

3.40

3.45

3.50

5 10 15

Time

pr
ot

ei
n

And now, a simple line plot, reusing the tp object, and connecting lines along Cow.
tp + geom_line(aes(group=Cow))

168

CHAPTER 12. PLOTTING 12.2. THE GGPLOT2 SYSTEM

2.5

3.0

3.5

4.0

4.5

5 10 15

Time

pr
ot

ei
n

The line plot is completely incomprehensible. Better look at boxplots along time (even if omitting the Cow information).
tp + geom_boxplot(aes(group=Time))

2.5

3.0

3.5

4.0

4.5

0 5 10 15 20

Time

pr
ot

ei
n

We can do some statistics for each subgroup. The following will compute the mean and standard errors of protein at
each time point.
ggplot(Milk, aes(x=Time, y=protein)) +
stat_summary(fun.data = 'mean_se')

169

12.2. THE GGPLOT2 SYSTEM CHAPTER 12. PLOTTING

3.3

3.4

3.5

3.6

3.7

3.8

3.9

5 10 15

Time

pr
ot

ei
n

Some popular statistical summaries, have gained their own functions:

• mean_cl_boot: mean and bootstrapped confidence interval (default 95%).
• mean_cl_normal: mean and Gaussian (t-distribution based) confidence interval (default 95%).
• mean_dsl: mean plus or minus standard deviation times some constant (default constant=2).
• median_hilow: median and outer quantiles (default outer quantiles = 0.025 and 0.975).

For less popular statistical summaries, we may specify the statistical function in stat_summary. The median is a first
example.
ggplot(Milk, aes(x=Time, y=protein)) +
stat_summary(fun.y="median", geom="point")

3.4

3.6

3.8

5 10 15

Time

pr
ot

ei
n

We can also define our own statistical summaries.
medianlog <- function(y) {median(log(y))}
ggplot(Milk, aes(x=Time, y=protein)) +
stat_summary(fun.y="medianlog", geom="line")

170

CHAPTER 12. PLOTTING 12.2. THE GGPLOT2 SYSTEM

1.20

1.25

1.30

1.35

5 10 15

Time

pr
ot

ei
n

Faceting allows to split the plotting along some variable. face_wrap tells R to compute the number of columns and
rows of plots automatically.
ggplot(Milk, aes(x=protein, color=Diet)) +
geom_density() +
facet_wrap(~Time)

16 17 18 19

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

2.53.03.54.04.52.53.03.54.04.52.53.03.54.04.52.53.03.54.04.5

2.53.03.54.04.5

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

protein

de
ns

ity

Diet

barley

barley+lupins

lupins

facet_grid forces the plot to appear allow rows or columns, using the ~ syntax.
ggplot(Milk, aes(x=Time, y=protein)) +
geom_point() +
facet_grid(Diet~.) # `.~Diet` to split along columns and not rows.

171

12.2. THE GGPLOT2 SYSTEM CHAPTER 12. PLOTTING

barley
barley+

lupins
lupins

5 10 15

2.5

3.0

3.5

4.0

4.5

2.5

3.0

3.5

4.0

4.5

2.5

3.0

3.5

4.0

4.5

Time

pr
ot

ei
n

To control the looks of the plot, ggplot2 uses themes.
ggplot(Milk, aes(x=Time, y=protein)) +
geom_point() +
theme(panel.background=element_rect(fill="lightblue"))

2.5

3.0

3.5

4.0

4.5

5 10 15

Time

pr
ot

ei
n

ggplot(Milk, aes(x=Time, y=protein)) +
geom_point() +
theme(panel.background=element_blank(),

axis.title.x=element_blank())

172

CHAPTER 12. PLOTTING 12.3. INTERACTIVE GRAPHICS

2.5

3.0

3.5

4.0

4.5

5 10 15

pr
ot

ei
n

Saving plots can be done using ggplot2::ggsave, or with pdf like the graphics plots:
pdf(file = 'myplot.pdf')
print(tp) # You will need an explicit print command!
dev.off()

Remark. If you are exporting a PDF for publication, you will probably need to embed your fonts in the PDF. In this
case, use cairo_pdf() instead of pdf().

Finally, what every user of ggplot2 constantly uses, is the (excellent!) online documentation at http://docs.ggplot2.
org.

12.2.1 Extensions of the ggplot2 System
Because ggplot2 plots are R objects, they can be used for computations and altered. Many authors, have thus extended
the basic ggplot2 functionality. A list of ggplot2 extensions is curated by Daniel Emaasit at http://www.ggplot2-
exts.org6. The RStudio team has its own list of recommended packages at RStartHere7.

12.3 Interactive Graphics
As already mentioned, the recent and dramatic advancement in interactive visualization was made possible by the
advances in web technologies, and the D3.JS8 JavaScript library in particular. This is because it allows developers
to rely on existing libraries designed for web browsing, instead of re-implementing interactive visualizations. These
libraries are more visually pleasing, and computationally efficient, than anything they could have developed themselves.

The htmlwidgets9 package does not provide visualization, but rather, it facilitates the creation of new interactive
visualizations. This is because it handles all the technical details that are required to use R output within JavaScript
visualization libraries.

For a list of interactive visualization tools that rely on htmlwidgets see their (amazing) gallery10, and the
RStartsHere11 page. In the following sections, we discuss a selected subset.

12.3.1 Plotly
You can create nice interactive graphs using plotly::plot_ly:

6http://www.ggplot2-exts.org/gallery/
7https://github.com/rstudio/RStartHere
8https://d3js.org/
9http://www.htmlwidgets.org/

10http://gallery.htmlwidgets.org/
11https://github.com/rstudio/RStartHere

173

http://docs.ggplot2.org
http://docs.ggplot2.org
http://www.ggplot2-exts.org/gallery/
https://github.com/rstudio/RStartHere
https://d3js.org/
http://www.htmlwidgets.org/
http://gallery.htmlwidgets.org/
https://github.com/rstudio/RStartHere

12.4. OTHER R INTERFACES TO JAVASCRIPT PLOTTING CHAPTER 12. PLOTTING

library(plotly)
set.seed(100)
d <- diamonds[sample(nrow(diamonds), 1000),]

plot_ly(data = d, x = ~carat, y = ~price, color = ~carat, size = ~carat, text = ~paste("Clarity: ", clarity))

More conveniently, any ggplot2 graph can be made interactive using plotly::ggplotly:
p <- ggplot(data = d, aes(x = carat, y = price)) +
geom_smooth(aes(colour = cut, fill = cut), method = 'loess') +
facet_wrap(~ cut) # make ggplot

ggplotly(p) # from ggplot to plotly

How about exporting plotly objects? Well, a plotly object is nothing more than a little web site: an HTML file.
When showing a plotly figure, RStudio merely servers you as a web browser. You could, alternatively, export this
HTML file to send your colleagues as an email attachment, or embed it in a web site. To export these, use the
plotly::export or the htmlwidgets::saveWidget functions.

For more on plotly see https://plot.ly/r/.

12.4 Other R Interfaces to JavaScript Plotting
Plotly is not the only interactive plotting framework in R that relies o JavaScript for interactivity. Here are some more
interactive and beautiful charting libraries.

• Highcharts12, like Plotly [12.3.1], is a popular collection of JavaScript plotting libraries, with great emphasis on
aesthetics. The package highcharter13 is an R wrapper for dispatching plots to highcharts. For a demo of the
capabilities of Highcarts, see here14.

• Rbokeh15 is a R wrapper for the popular Bokeh16 JavaScript charting libraries.

• r2d317: a R wrapper to the D318 plotting libraries.

• trelliscope19: for beautiful, interactive, plotting of small multiples20; think of it as interactive faceting.

• VegaWidget21. An interfave to the Vega-lite22 plotting libraries.

12.5 Bibliographic Notes
For the graphics package, see R Core Team (2016). For ggplot2 see Wickham (2009). For the theory underlying
ggplot2, i.e. the Grammar of Graphics, see Wilkinson (2006). A video23 by one of my heroes, Brian Caffo24, discussing
graphics vs. ggplot2.

12.6 Practice Yourself
1. Go to the Fancy Graphics Section 12.1.3. Try parsing the commands in your head.

2. Recall the medianlog example and replace the medianlog function with a harmonic mean25.
12https://www.highcharts.com/
13https://cran.r-project.org/package=highcharter
14https://www.highcharts.com/demo
15http://hafen.github.io/rbokeh/
16https://bokeh.pydata.org/en/latest/
17https://rstudio.github.io/r2d3/
18https://d3js.org/
19https://hafen.github.io/trelliscopejs/#trelliscope
20https://www.juiceanalytics.com/writing/better-know-visualization-small-multiples
21https://vegawidget.github.io/vegawidget/
22https://vega.github.io/vega-lite/
23https://www.youtube.com/watch?v=9Objw9Tvhb4&feature=youtu.be
24http://www.bcaffo.com/
25https://en.wikipedia.org/wiki/Harmonic_mean

174

https://plot.ly/r/
https://www.highcharts.com/
https://cran.r-project.org/package=highcharter
https://www.highcharts.com/demo
http://hafen.github.io/rbokeh/
https://bokeh.pydata.org/en/latest/
https://rstudio.github.io/r2d3/
https://d3js.org/
https://hafen.github.io/trelliscopejs/#trelliscope
https://www.juiceanalytics.com/writing/better-know-visualization-small-multiples
https://vegawidget.github.io/vegawidget/
https://vega.github.io/vega-lite/
https://www.youtube.com/watch?v=9Objw9Tvhb4&feature=youtu.be
http://www.bcaffo.com/
https://en.wikipedia.org/wiki/Harmonic_mean

CHAPTER 12. PLOTTING 12.6. PRACTICE YOURSELF

medianlog <- function(y) {median(log(y))}
ggplot(Milk, aes(x=Time, y=protein)) +
stat_summary(fun.y="medianlog", geom="line")

1.20

1.25

1.30

1.35

5 10 15

Time

pr
ot

ei
n

“‘

3. Write a function that creates a boxplot from scratch. See how I built a line graph in Section 12.1.3.

4. Export my plotly example using the RStudio interface and send it to yourself by email.

ggplot2:

1. Read about the “oats” dataset using ? MASS::oats.
1. Inspect, visually, the dependency of the yield (Y) in the Varieties (V) and the Nitrogen treatment (N).
2. Compute the mean and the standard error of the yield for every value of Varieties and Nitrogen treatment.
3. Change the axis labels to be informative with labs function and give a title to the plot with ggtitle

function.
2. Read about the “mtcars” data set using ? mtcars.

1. Inspect, visually, the dependency of the Fuel consumption (mpg) in the weight (wt)
2. Inspect, visually, the assumption that the Fuel consumption also depends on the number of cylinders.
3. Is there an interaction between the number of cylinders to the weight (i.e. the slope of the regression line is

different between the number of cylinders)? Use geom_smooth.

See DataCamp’s Data Visualization with ggplot226 for more self practice.

26https://www.datacamp.com/courses/data-visualization-with-ggplot2-1

175

https://www.datacamp.com/courses/data-visualization-with-ggplot2-1

12.6. PRACTICE YOURSELF CHAPTER 12. PLOTTING

176

Chapter 13

Reports

If you have ever written a report, you are probably familiar with the process of preparing your figures in some software,
say R, and then copy-pasting into your text editor, say MS Word. While very popular, this process is both tedious,
and plain painful if your data has changed and you need to update the report. Wouldn’t it be nice if you could produce
figures and numbers from within the text of the report, and everything else would be automated? It turns out it is
possible. There are actually several systems in R that allow this. We start with a brief review.

1. Sweave: LaTeX is a markup language that compiles to Tex programs that compile, in turn, to documents
(typically PS or PDFs). If you never heard of it, it may be because you were born the the MS Windows+MS
Word era. You should know, however, that LaTeX was there much earlier, when computers were mainframes
with text-only graphic devices. You should also know that LaTeX is still very popular (in some communities)
due to its very rich markup syntax, and beautiful output. Sweave (Leisch, 2002) is a compiler for LaTeX that
allows you do insert R commands in the LaTeX source file, and get the result as part of the outputted PDF. It’s
name suggests just that: it allows to weave S1 output into the document, thus, Sweave.

2. knitr: Markdown is a text editing syntax that, unlike LaTeX, is aimed to be human-readable, but also compilable
by a machine. If you ever tried to read HTML or LaTeX source files, you may understand why human-readability
is a desirable property. There are many markdown compilers. One of the most popular is Pandoc, written by
the Berkeley philosopher(!) Jon MacFarlane. The availability of Pandoc gave Yihui Xie2, a name to remember,
the idea that it is time for Sweave to evolve. Yihui thus wrote knitr (Xie, 2015), which allows to write human
readable text in Rmarkdown, a superset of markdown, compile it with R and the compile it with Pandoc. Because
Pandoc can compile to PDF, but also to HTML, and DOCX, among others, this means that you can write in
Rmarkdown, and get output in almost all text formats out there.

3. bookdown: Bookdown (Xie, 2016) is an evolution of knitr, also written by Yihui Xie, now working for
RStudio. The text you are now reading was actually written in bookdown. It deals with the particular needs
of writing large documents, and cross referencing in particular (which is very challenging if you want the text to
be human readable).

4. Shiny: Shiny is essentially a framework for quick web-development. It includes (i) an abstraction layer that
specifies the layout of a web-site which is our report, (ii) the command to start a web server to deliver the site.
For more on Shiny see Chang et al. (2017).

13.1 knitr
13.1.1 Installation
To run knitr you will need to install the package.
install.packages('knitr')

It is also recommended that you use it within RStudio (version>0.96), where you can easily create a new .Rmd file.
1Recall, S was the original software from which R evolved.
2https://yihui.name/

177

https://yihui.name/

13.1. KNITR CHAPTER 13. REPORTS

13.1.2 Pandoc Markdown
Because knitr builds upon Pandoc markdown, here is a simple example of markdown text, to be used in a .Rmd file,
which can be created using the File-> New File -> R Markdown menu of RStudio.

Underscores or asterisks for _italics1_ and *italics2* return italics1 and italics2. Double underscores or asterisks
for __bold1__ and **bold2** return bold1 and bold2. Subscripts are enclosed in tildes, like~this~ (likethis), and
superscripts are enclosed in carets like^this^ (likethis).

For links use [text](link), like [my site](www.john-ros.com). An image is the same as a link, starting with an
exclamation, like this ![image caption](image path).

An itemized list simply starts with hyphens preceeded by a blank line (don’t forget that!):

- bullet
- bullet

- second level bullet
- second level bullet

Compiles into:

• bullet
• bullet

– second level bullet
– second level bullet

An enumerated list starts with an arbitrary number:

1. number
1. number

1. second level number
1. second level number

Compiles into:

1. number
2. number

1. second level number
2. second level number

For more on markdown see https://bookdown.org/yihui/bookdown/markdown-syntax.html.

13.1.3 Rmarkdown
Rmarkdown, is an extension of markdown due to RStudio, that allows to incorporate R expressions in the text, that
will be evaluated at the time of compilation, and the output automatically inserted in the outputted text. The output
can be a .PDF, .DOCX, .HTML or others, thanks to the power of Pandoc.

The start of a code chunk is indicated by three backticks and the end of a code chunk is indicated by three backticks.
Here is an example.

```{r eval=FALSE}
rnorm(10)
```

This chunk will compile to the following output (after setting eval=FALSE to eval=TRUE):
rnorm(10)

[1] -1.4831493 1.4715570 0.1563814 0.1159138 0.4786086 1.4937581
[7] 1.1720308 1.5981221 -2.2018453 -2.0068470

Things to note:

• The evaluated expression is added in a chunk of highlighted text, before the R output.
• The output is prefixed with ##.

178

https://bookdown.org/yihui/bookdown/markdown-syntax.html

CHAPTER 13. REPORTS 13.1. KNITR

• The eval= argument is not required, since it is set to eval=TRUE by default. It does demonstrate how to set the
options of the code chunk.

In the same way, we may add a plot:

```{r eval=FALSE}
plot(rnorm(10))
```

which compiles into
plot(rnorm(10))

2 4 6 8 10

−
1.

0
0.

0
1.

0

Index

rn
or

m
(1

0)

Some useful code chunk options include:

• eval=FALSE: to return code only, without output.
• echo=FALSE: to return output, without code.
• cache=: to save results so that future compilations are faster.
• results='hide': to plot figures, without text output.
• collapse=TRUE: if you want the whole output after the whole code, and not interleaved.
• warning=FALSE: to supress watning. The same for message=FALSE, and error=FALSE.

You can also call r expressions inline. This is done with a single tick and the r argument. For instance:

`r rnorm(1)` is a random Gaussian

will output

0.6300902 is a random Gaussian.

13.1.4 BibTex
BibTex is both a file format and a compiler. The bibtex compiler links documents to a reference database stored in
the .bib file format.

Bibtex is typically associated with Tex and LaTex typesetting, but it also operates within the markdown pipeline.

Just store your references in a .bib file, add a bibliography: yourFile.bib in the YML preamble of your Rmarkdown
file, and call your references from the Rmarkdown text using @referencekey. Rmarkdow will take care of creating
the bibliography, and linking to it from the text.

13.1.5 Compiling
Once you have your .Rmd file written in RMarkdown, knitr will take care of the compilation for you. You can call the
knitr::knitr function directly from some .R file, or more conveniently, use the RStudio (0.96) Knit button above
the text editing window. The location of the output file will be presented in the console.

179

13.2. BOOKDOWN CHAPTER 13. REPORTS

13.2 bookdown
As previously stated, bookdown is an extension of knitr intended for documents more complicated than simple
reports– such as books. Just like knitr, the writing is done in RMarkdown. Being an extension of knitr, bookdown
does allow some markdowns that are not supported by other compilers. In particular, it has a more powerful cross
referencing system.

13.3 Shiny
Shiny (Chang et al., 2017) is different than the previous systems, because it sets up an interactive web-site, and not
a static file. The power of Shiny is that the layout of the web-site, and the settings of the web-server, is made with
several simple R commands, with no need for web-programming. Once you have your app up and running, you can
setup your own Shiny server on the web, or publish it via Shinyapps.io3. The freemium versions of the service can
deal with a small amount of traffic. If you expect a lot of traffic, you will probably need the paid versions.

13.3.1 Installation
To setup your first Shiny app, you will need the shiny package. You will probably want RStudio, which facilitates
the process.
install.packages('shiny')

Once installed, you can run an example app to get the feel of it.
library(shiny)
runExample("01_hello")

Remember to press the Stop button in RStudio to stop the web-server, and get back to RStudio.

13.3.2 The Basics of Shiny
Every Shiny app has two main building blocks.

1. A user interface, specified via the ui.R file in the app’s directory.
2. A server side, specified via the server.R file, in the app’s directory.

You can run the app via the RunApp button in the RStudio interface, of by calling the app’s directory with the
shinyApp or runApp functions– the former designed for single-app projects, and the latter, for multiple app projects.
shiny::runApp("my_app") # my_app is the app's directory.

The site’s layout, is specified in the ui.R file using one of the layout functions. For instance, the function
sidebarLayout, as the name suggest, will create a sidebar. More layouts are detailed in the layout guide4.

The active elements in the UI, that control your report, are known as widgets. Each widget will have a unique inputId
so that it’s values can be sent from the UI to the server. More about widgets, in the widget gallery5.

The inputId on the UI are mapped to input arguments on the server side. The value of the mytext inputId can be
queried by the server using input$mytext. These are called reactive values. The way the server “listens” to the UI, is
governed by a set of functions that must wrap the input object. These are the observe, reactive, and reactive*
class of functions.

With observe the server will get triggered when any of the reactive values change. With observeEvent the server
will only be triggered by specified reactive values. Using observe is easier, and observeEvent is more prudent
programming.

A reactive function is a function that gets triggered when a reactive element changes. It is defined on the server
side, and reside within an observe function.

We now analyze the 1_Hello app using these ideas. Here is the ui.R file.
3https://www.shinyapps.io/
4http://shiny.rstudio.com/articles/layout-guide.html
5http://shiny.rstudio.com/gallery/widget-gallery.html

180

https://www.shinyapps.io/
http://shiny.rstudio.com/articles/layout-guide.html
http://shiny.rstudio.com/gallery/widget-gallery.html

CHAPTER 13. REPORTS 13.3. SHINY

library(shiny)

shinyUI(fluidPage(

titlePanel("Hello Shiny!"),

sidebarLayout(
sidebarPanel(
sliderInput(inputId = "bins",

label = "Number of bins:",
min = 1,
max = 50,
value = 30)

),

mainPanel(
plotOutput(outputId = "distPlot")

)
)

))

Here is the server.R file:
library(shiny)

shinyServer(function(input, output) {

output$distPlot <- renderPlot({
x <- faithful[, 2] # Old Faithful Geyser data
bins <- seq(min(x), max(x), length.out = input$bins + 1)

hist(x, breaks = bins, col = 'darkgray', border = 'white')
})

})

Things to note:

• ShinyUI is a (deprecated) wrapper for the UI.
• fluidPage ensures that the proportions of the elements adapt to the window side, thus, are fluid.
• The building blocks of the layout are a title, and the body. The title is governed by titlePanel, and the body

is governed by sidebarLayout. The sidebarLayout includes the sidebarPanel to control the sidebar, and the
mainPanel for the main panel.

• sliderInput calls a widget with a slider. Its inputId is bins, which is later used by the server within the
renderPlot reactive function.

• plotOutput specifies that the content of the mainPanel is a plot (textOutput for text). This expectation is
satisfied on the server side with the renderPlot function (renderText).

• shinyServer is a (deprecated) wrapper function for the server.
• The server runs a function with an input and an output. The elements of input are the inputIds from the UI.

The elements of the output will be called by the UI using their outputId.

This is the output.

Here is another example, taken from the RStudio Shiny examples6.

ui.R:
library(shiny)

fluidPage(

6https://github.com/rstudio/shiny-examples/tree/master/006-tabsets

181

https://github.com/rstudio/shiny-examples/tree/master/006-tabsets

13.3. SHINY CHAPTER 13. REPORTS

titlePanel("Tabsets"),

sidebarLayout(
sidebarPanel(
radioButtons(inputId = "dist",

label = "Distribution type:",
c("Normal" = "norm",
"Uniform" = "unif",
"Log-normal" = "lnorm",
"Exponential" = "exp")),

br(), # add a break in the HTML page.

sliderInput(inputId = "n",
label = "Number of observations:",
value = 500,
min = 1,
max = 1000)

),

mainPanel(
tabsetPanel(type = "tabs",
tabPanel(title = "Plot", plotOutput(outputId = "plot")),
tabPanel(title = "Summary", verbatimTextOutput(outputId = "summary")),
tabPanel(title = "Table", tableOutput(outputId = "table"))

)
)

)
)

server.R:
library(shiny)

Define server logic for random distribution application
function(input, output) {

data <- reactive({
dist <- switch(input$dist,

norm = rnorm,
unif = runif,
lnorm = rlnorm,
exp = rexp,
rnorm)

dist(input$n)
})

output$plot <- renderPlot({
dist <- input$dist
n <- input$n

hist(data(), main=paste('r', dist, '(', n, ')', sep=''))
})

output$summary <- renderPrint({
summary(data())

})

182

CHAPTER 13. REPORTS 13.3. SHINY

output$table <- renderTable({
data.frame(x=data())

})

}

Things to note:

• We reused the sidebarLayout.
• As the name suggests, radioButtons is a widget that produces radio buttons, above the sliderInput widget.

Note the different inputIds.
• Different widgets are separated in sidebarPanel by commas.
• br() produces extra vertical spacing (break).
• tabsetPanel produces tabs in the main output panel. tabPanel governs the content of each panel. Notice the use

of various output functions (plotOutput,verbatimTextOutput, tableOutput) with corresponding outputIds.
• In server.R we see the usual function(input,output).
• The reactive function tells the server the trigger the function whenever input changes.
• The output object is constructed outside the reactive function. See how the elements of output correspond to

the outputIds in the UI.

This is the output:

13.3.3 Beyond the Basics
Now that we have seen the basics, we may consider extensions to the basic report.

13.3.3.1 Widgets

• actionButton Action Button.
• checkboxGroupInput A group of check boxes.
• checkboxInput A single check box.
• dateInput A calendar to aid date selection.
• dateRangeInput A pair of calendars for selecting a date range.
• fileInput A file upload control wizard.
• helpText Help text that can be added to an input form.
• numericInput A field to enter numbers.
• radioButtons A set of radio buttons.
• selectInput A box with choices to select from.
• sliderInput A slider bar.
• submitButton A submit button.
• textInput A field to enter text.

See examples here7.

13.3.3.2 Output Elements

The ui.R output types.

• htmlOutput raw HTML.
• imageOutput image.
• plotOutput plot.
• tableOutput table.
• textOutput text.
• uiOutput raw HTML.
• verbatimTextOutput text.

The corresponding server.R renderers.

• renderImage images (saved as a link to a source file).
7https://shiny.rstudio.com/gallery/widget-gallery.html

183

https://shiny.rstudio.com/gallery/widget-gallery.html

13.4. FLEXDASHBOARD CHAPTER 13. REPORTS

• renderPlot plots.
• renderPrint any printed output.
• renderTable data frame, matrix, other table like structures.
• renderText character strings.
• renderUI a Shiny tag object or HTML.

Your Shiny app can use any R object. The things to remember:

• The working directory of the app is the location of server.R.
• The code before shinyServer is run only once.
• The code inside ‘shinyServer is run whenever a reactive is triggered, and may thus slow things.

To keep learning, see the RStudio’s tutorial8, and the Biblipgraphic notes herein.

13.3.4 shinydashboard
A template for Shiny to give it s modern look.

13.4 flexdashboard
If you want to quickly write an interactive dashboard, which is simple enough to be a static HTML file and does not
need an HTML server, then Shiny may be an overkill. With flexdashboard you can write your dashboard a single
.Rmd file, which will generate an interactive dashboard as a static HTML file.

See [http://rmarkdown.rstudio.com/flexdashboard/] for more info.

13.5 Bibliographic Notes
For RMarkdown see here9. For everything on knitr see Yihui’s blog10, or the book Xie (2015). For a bookdown
manual, see Xie (2016). For a Shiny manual, see Chang et al. (2017), the RStudio tutorial11, or Hadley’s Book12.
Video tutorials are available here13.

13.6 Practice Yourself
1. Generate a report using knitr with your name as title, and a scatter plot of two random variables in the body.

Save it as PDF, DOCX, and HTML.

2. Recall that this book is written in bookdown, which is a superset of knitr. Go to the source .Rmd file of
the first chapter, and parse it in your head: (https://raw.githubusercontent.com/johnros/Rcourse/master/02-r-
basics.Rmd)

8http://shiny.rstudio.com/tutorial/
9http://rmarkdown.rstudio.com/

10https://yihui.name/knitr/
11http://shiny.rstudio.com/tutorial/
12https://mastering-shiny.org
13https://www.rstudio.com/resources/webinars/shiny-developer-conference/

184

http://rmarkdown.rstudio.com/flexdashboard/
https://raw.githubusercontent.com/johnros/Rcourse/master/02-r-basics.Rmd
https://raw.githubusercontent.com/johnros/Rcourse/master/02-r-basics.Rmd
http://shiny.rstudio.com/tutorial/
http://rmarkdown.rstudio.com/
https://yihui.name/knitr/
http://shiny.rstudio.com/tutorial/
https://mastering-shiny.org
https://www.rstudio.com/resources/webinars/shiny-developer-conference/

Chapter 14

Sparse Representations

Analyzing “bigdata” in R is a challenge because the workspace is memory resident, i.e., all your objects are stored in
RAM. As a rule of thumb, fitting models requires about 5 times the size of the data. This means that if you have 1
GB of data, you might need about 5 GB to fit a linear models. We will discuss how to compute out of RAM in the
Memory Efficiency Chapter 15. In this chapter, we discuss efficient representations of your data, so that it takes less
memory. The fundamental idea, is that if your data is sparse, i.e., there are many zero entries in your data, then a
naive data.frame or matrix will consume memory for all these zeroes. If, however, you have many recurring zeroes,
it is more efficient to save only the non-zero entries.

When we say data, we actually mean the model.matrix. The model.matrix is a matrix that R grows, converting all
your factors to numeric variables that can be computed with. Dummy coding of your factors, for instance, is something
that is done in your model.matrix. If you have a factor with many levels, you can imagine that after dummy coding
it, many zeroes will be present.

The Matrix package replaces the matrix class, with several sparse representations of matrix objects.

When using sparse representation, and the Matrix package, you will need an implementation of your favorite model
fitting algorithm (e.g. lm) that is adapted to these sparse representations; otherwise, R will cast the sparse matrix
into a regular (non-sparse) matrix, and you will have saved nothing in RAM.

Remark. If you are familiar with MATLAB you should know that one of the great capabilities of MATLAB, is the
excellent treatment of sparse matrices with the sparse function.

Before we go into details, here is a simple example. We will create a factor of letters with the letters function.
Clearly, this factor can take only 26 values. This means that 25/26 of the model.matrix will be zeroes after dummy
coding. We will compare the memory footprint of the naive model.matrix with the sparse representation of the same
matrix.
library(magrittr)
reps <- 1e6 # number of samples
y<-rnorm(reps)
x<- letters %>%
sample(reps, replace=TRUE) %>%
factor

The object x is a factor of letters:
head(x)

[1] n g q c z d
Levels: a b c d e f g h i j k l m n o p q r s t u v w x y z

We dummy code x with the model.matrix function.
X.1 <- model.matrix(~x-1)
head(X.1)

xa xb xc xd xe xf xg xh xi xj xk xl xm xn xo xp xq xr xs xt xu xv xw xx

185

CHAPTER 14. SPARSE REPRESENTATIONS

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
4 0 0 1 0
5 0
6 0 0 0 1 0
xy xz
1 0 0
2 0 0
3 0 0
4 0 0
5 0 1
6 0 0

We call MatrixModels for an implementation of model.matrix that supports sparse representations.
library(MatrixModels)
X.2<- as(x,"sparseMatrix") %>% t # Makes sparse dummy model.matrix
head(X.2)

6 x 26 sparse Matrix of class "dgCMatrix"
##
[1,] 1
[2,] 1
[3,] 1
[4,] . . 1 .
[5,] . 1
[6,] . . . 1 .

Notice that the matrices have the same dimensions:
dim(X.1)

[1] 1000000 26
dim(X.2)

[1] 1000000 26

The memory footprint of the matrices, given by the pryr::object_size function, are very very different.
pryr::object_size(X.1)

272 MB
pryr::object_size(X.2)

12 MB

Things to note:

• The sparse representation takes a whole lot less memory than the non sparse.
• The as(,"sparseMatrix") function grows the dummy variable representation of the factor x.
• The pryr package provides many facilities for inspecting the memory footprint of your objects and code.

With a sparse representation, we not only saved on RAM, but also on the computing time of fitting a model. Here is
the timing of a non sparse representation:
system.time(lm.1 <- lm(y ~ X.1))

user system elapsed
4.879 3.216 2.172

Well actually, lm is a wrapper for the lm.fit function. If we override all the overhead of lm, and call lm.fit directly,
we gain some time:

186

CHAPTER 14. SPARSE REPRESENTATIONS 14.1. SPARSE MATRIX REPRESENTATIONS

system.time(lm.1 <- lm.fit(y=y, x=X.1))

user system elapsed
1.819 1.889 0.660

We now do the same with the sparse representation:
system.time(lm.2 <- MatrixModels:::lm.fit.sparse(X.2,y))

user system elapsed
0.157 0.062 0.218

It is only left to verify that the returned coefficients are the same:
all.equal(lm.2, unname(lm.1$coefficients), tolerance = 1e-12)

[1] TRUE

You can also visualize the non zero entries, i.e., the sparsity structure.
image(X.2[1:26,1:26])

Dimensions: 26 x 26
Column

R
ow

5

10

15

20

25

5 10 15 20 25

14.1 Sparse Matrix Representations
We first distinguish between the two main goals of the efficient representation: (i) efficient writing, i.e., modification;
(ii) efficient reading, i.e., access. For our purposes, we will typically want efficient reading, since the model.matrix
will not change while a model is being fitted.

Representations designed for writing include the dictionary of keys, list of lists, and a coordinate list. Representations
designed for efficient reading include the compressed sparse row and compressed sparse column.

14.1.1 Coordinate List Representation
A coordinate list representation, also known as COO, or triplet represantation is simply a list of the non zero entries.
Each element in the list is a triplet of the row, column, and value, of each non-zero entry in the matrix. For instance
the matrix

[0 𝑎2 0
0 0 𝑏3

]

187

14.2. SPARSE MATRICES AND SPARSE MODELS IN R CHAPTER 14. SPARSE REPRESENTATIONS

will be
[1 2 𝑎2
2 3 𝑏3

] .

14.1.2 Compressed Row Oriented Representation
Compressed row oriented representation, also known as compressed sparse row, or CSR. CSR is similar to COO with
a compressed row vector. Instead of holding the row of each non-zero entry, the row vector holds the locations in the
colum vector where a row is increased. See the next illustration.

Figure 14.1: The CSR data structure. From Shah and Gilbert (2004). Remember that MATLAB is written in C,
where the indexing starts at 0, and not 1.

14.1.3 Compressed Column Oriented Representation
A compressed column oriented representation, also known as compressed sparse column, or CSC. In CSC the column
vector is compressed. Unlike CSR where the row vector is compressed. The nature of statistical applications is such,
that CSC representation is typically the most economical, justifying its popularity.

14.1.4 Sparse Algorithms
We will go into the details of some algorithms in the Numerical Linear Algebra Chapter 17. For our current purposes
two things need to be emphasized:

1. Working with sparse representations requires using a function that is aware of the representation you are using.

2. A mathematician may write 𝐴𝑥 = 𝑏 ⇒ 𝑥 = 𝐴−1𝑏. This is a predicate1 of 𝑥,i.e., a property that 𝑥 satisfies, which
helps with its analysis. A computer, however, would never compute 𝐴−1 in order to find 𝑥, but rather use one
of many endlessly many numerical algorithms. A computer will typically “search” various 𝑥’s until it finds the
one that fulfils the predicate.

14.2 Sparse Matrices and Sparse Models in R
14.2.1 The Matrix Package
The Matrix package provides facilities to deal with real (stored as double precision), logical and so-called “pattern”
(binary) dense and sparse matrices. There are provisions to provide integer and complex (stored as double precision
complex) matrices.

The sparse matrix classes include:
1https://en.wikipedia.org/wiki/Predicate_(mathematical_logic)

188

https://en.wikipedia.org/wiki/Predicate_(mathematical_logic)

CHAPTER 14. SPARSE REPRESENTATIONS 14.2. SPARSE MATRICES AND SPARSE MODELS IN R

• TsparseMatrix: a virtual class of the various sparse matrices in triplet representation.
• CsparseMatrix: a virtual class of the various sparse matrices in CSC representation.
• RsparseMatrix: a virtual class of the various sparse matrices in CSR representation.

For matrices of real numbers, stored in double precision, the Matrix package provides the following (non virtual)
classes:

• dgTMatrix: a general sparse matrix of doubles, in triplet representation.
• dgCMatrix: a general sparse matrix of doubles, in CSC representation.
• dsCMatrix: a symmetric sparse matrix of doubles, in CSC representation.
• dtCMatrix: a triangular sparse matrix of doubles, in CSC representation.

Why bother with distinguishing between the different shapes of the matrix? Because the more structure is assumed
on a matrix, the more our (statistical) algorithms can be optimized. For our purposes dgCMatrix will be the most
useful.

14.2.2 The glmnet Package
As previously stated, an efficient storage of the model.matrix is half of the story. We now need implementations of our
favorite statistical algorithms that make use of this representation. At the time of writing, a very useful package that
does that is the glmnet package, which allows to fit linear models, generalized linear models, with ridge, lasso, and
elastic net regularization. The glmnet package allows all of this, using the sparse matrices of the Matrix package.

The following example is taken from John Myles White’s blog2, and compares the runtime of fitting an OLS model,
using glmnet with both sparse and dense matrix representations.
library('glmnet')

set.seed(1)
performance <- data.frame()

for (sim in 1:10){
n <- 10000
p <- 500

nzc <- trunc(p / 10)

x <- matrix(rnorm(n * p), n, p) #make a dense matrix
iz <- sample(1:(n * p),

size = n * p * 0.85,
replace = FALSE)

x[iz] <- 0 # sparsify by injecting zeroes
sx <- Matrix(x, sparse = TRUE) # save as a sparse object

beta <- rnorm(nzc)
fx <- x[, seq(nzc)] %*% beta

eps <- rnorm(n)
y <- fx + eps # make data

Now to the actual model fitting:
sparse.times <- system.time(fit1 <- glmnet(sx, y)) # sparse glmnet
full.times <- system.time(fit2 <- glmnet(x, y)) # dense glmnet

sparse.size <- as.numeric(object.size(sx))
full.size <- as.numeric(object.size(x))

performance <- rbind(performance, data.frame(Format = 'Sparse',
UserTime = sparse.times[1],

2http://www.johnmyleswhite.com/notebook/2011/10/31/using-sparse-matrices-in-r/

189

http://www.johnmyleswhite.com/notebook/2011/10/31/using-sparse-matrices-in-r/

14.2. SPARSE MATRICES AND SPARSE MODELS IN R CHAPTER 14. SPARSE REPRESENTATIONS

SystemTime = sparse.times[2],
ElapsedTime = sparse.times[3],
Size = sparse.size))

performance <- rbind(performance, data.frame(Format = 'Full',
UserTime = full.times[1],
SystemTime = full.times[2],
ElapsedTime = full.times[3],
Size = full.size))

}

Things to note:

• The simulation calls glmnet twice. Once with the non-sparse object x, and once with its sparse version sx.
• The degree of sparsity of sx is 85%. We know this because we “injected” zeroes in 0.85 of the locations of x.
• Because y is continuous glmnet will fit a simple OLS model. We will see later how to use it to fit GLMs and use

lasso, ridge, and elastic-net regularization.

We now inspect the computing time, and the memory footprint, only to discover that sparse representations make a
BIG difference.
library('ggplot2')
ggplot(performance, aes(x = Format, y = ElapsedTime, fill = Format)) +
stat_summary(fun.data = 'mean_cl_boot', geom = 'bar') +
stat_summary(fun.data = 'mean_cl_boot', geom = 'errorbar') +
ylab('Elapsed Time in Seconds')

0.00

0.25

0.50

0.75

Sparse Full

Format

E
la

ps
ed

 T
im

e
in

 S
ec

on
ds

Format

Sparse

Full

ggplot(performance, aes(x = Format, y = Size / 1000000, fill = Format)) +
stat_summary(fun.data = 'mean_cl_boot', geom = 'bar') +
stat_summary(fun.data = 'mean_cl_boot', geom = 'errorbar') +
ylab('Matrix Size in MB')

190

CHAPTER 14. SPARSE REPRESENTATIONS 14.3. BEYOND SPARSITY

0

10

20

30

40

Sparse Full

Format

M
at

rix
 S

iz
e

in
 M

B

Format

Sparse

Full

How do we perform other types of regression with the glmnet? We just need to use the family and alpha arguments
of glmnet::glmnet. The family argument governs the type of GLM to fit: logistic, Poisson, probit, or other types of
GLM. The alpha argument controls the type of regularization. Set to alpha=0 for ridge, alpha=1 for lasso, and any
value in between for elastic-net regularization.

14.2.3 The MatrixModels Package
The MatrixModels3 package is designed to fit various models (linear, non-linear, generalized) using sparse matries. The
function MatrixModels::glm4 can easily replace stats::glm for all your needs. Unlike glmnet, the MatrixModels
package will not offer you model regularization.

14.2.4 The SparseM Package
Basic linear algebra with sparse matrices.

14.3 Beyond Sparsity
When you think of it, sparse matrix representations is nothing but a combo of lossless compression, with accompanying
matrix algorithms. Can this combo be leveraged when matrices are not sparse? At the time of writing, I am unaware
of R objects that explot this idea, but it is generally possible.

14.4 Apache Arrow
It is quite possible that your data contain redundancies, other than the number 0. In this case, you can still find
efficient representations, but you will need something more general than CRC and the likes. Apache Arrow is a a set
of C++ functions, for efficient representation of objects in memory. It can detect redundancies, and exploit them for
efficient representation, but it can do much much more:

• It is the technology underlying many software suits4, and is supporteb by R and Python.
• The memory representation is designed for easy read/writes into disk or network. This means that saving your

file, or sending it over the network, will require very little CPU. For optimal performance save it into Apache
Parquet5 using arrow::write_parquet, or Feather6 file formats, using the arrow::write_feather() function.
Read functions are also provided.

Arrow is a very exciting technology, and will certainly become dominant in the near future.
3https://cran.r-project.org/package=MatrixModels
4https://arrow.apache.org/powered_by/
5https://en.wikipedia.org/wiki/Apache_Parquet
6http://arrow.apache.org/blog/2019/08/08/r-package-on-cran/

191

https://cran.r-project.org/package=MatrixModels
https://arrow.apache.org/powered_by/
https://en.wikipedia.org/wiki/Apache_Parquet
http://arrow.apache.org/blog/2019/08/08/r-package-on-cran/

14.5. BIBLIOGRAPHIC NOTES CHAPTER 14. SPARSE REPRESENTATIONS

14.5 Bibliographic Notes
The best place to start reading on sparse representations and algorithms is the vignettes7 of the Matrix package.
Gilbert et al. (1992) is also a great read for some general background. See here8 for a blog-level review of sparse matrix
formats. For the theory on solving sparse linear systems see Davis (2006). For general numerical linear algebra see
Gentle (2012).

14.6 Practice Yourself
1. What is the CSC representation of the following matrix:

⎡⎢
⎣

0 1 0
0 0 6
1 0 1

⎤⎥
⎦

2. Write a function that takes two matrices in CSC and returns their matrix product.

7https://cran.r-project.org/web/packages/Matrix/vignettes/Intro2Matrix.pdf
8http://netlib.org/linalg/html_templates/node90.html

192

https://cran.r-project.org/web/packages/Matrix/vignettes/Intro2Matrix.pdf
http://netlib.org/linalg/html_templates/node90.html

Chapter 15

Memory Efficiency

As put by Kane et al. (2013), it was quite puzzling when very few of the competitors, for the Million dollars prize
in the Netflix challenge1, were statisticians. This is perhaps because the statistical community historically uses SAS,
SPSS, and R. The first two tools are very well equipped to deal with big data, but are very unfriendly when trying to
implement a new method. R, on the other hand, is very friendly for innovation, but was not equipped to deal with
the large data sets of the Netflix challenge. A lot has changed in R since 2006. This is the topic of this chapter.

As we have seen in the Sparsity Chapter 14, an efficient representation of your data in RAM will reduce computing
time, and will allow you to fit models that would otherwise require tremendous amounts of RAM. Not all problems
are sparse however. It is also possible that your data does not fit in RAM, even if sparse. There are several scenarios
to consider:

1. Your data fits in RAM, but is too big to compute with.
2. Your data does not fit in RAM, but fits in your local storage (HD, SSD, etc.)
3. Your data does not fit in your local storage.

If your data fits in RAM, but is too large to compute with, a solution is to replace the algorithm you are using. Instead
of computing with the whole data, your algorithm will compute with parts of the data, also called chunks, or batches.
These algorithms are known as external memory algorithms (EMA), or batch processing.

If your data does not fit in RAM, but fits in your local storage, you have two options. The first is to save your data
in a database management system (DBMS). This will allow you to use the algorithms provided by your DBMS, or let
R use an EMA while “chunking” from your DBMS. Alternatively, and preferably, you may avoid using a DBMS, and
work with the data directly form your local storage by saving your data in some efficient manner.

Finally, if your data does not fit on you local storage, you will need some external storage solution such as a distributed
DBMS, or distributed file system.

Remark. If you use Linux, you may be better of than Windows users. Linux will allow you to compute with larger
datasets using its swap file that extends RAM using your HD or SSD. On the other hand, relying on the swap file is a
BAD practice since it is much slower than RAM, and you can typically do much better using the tricks of this chapter.
Also, while I LOVE Linux, I would never dare to recommend switching to Linux just to deal with memory contraints.

15.1 Efficient Computing from RAM
If our data can fit in RAM, but is still too large to compute with it (recall that fitting a model requires roughly
5-10 times more memory than saving it), there are several facilities to be used. The first, is the sparse representation
discussed in Chapter 14, which is relevant when you have factors, which will typically map to sparse model matrices.
Another way is to use external memory algorithms (EMA).

The biglm::biglm function provides an EMA for linear regression. The following if taken from the function’s example.
data(trees)
ff<-log(Volume)~log(Girth)+log(Height)

1https://en.wikipedia.org/wiki/Netflix_Prize

193

https://en.wikipedia.org/wiki/Netflix_Prize

15.1. EFFICIENT COMPUTING FROM RAM CHAPTER 15. MEMORY EFFICIENCY

chunk1<-trees[1:10,]
chunk2<-trees[11:20,]
chunk3<-trees[21:31,]

library(biglm)
a <- biglm(ff,chunk1)
a <- update(a,chunk2)
a <- update(a,chunk3)

coef(a)

(Intercept) log(Girth) log(Height)
-6.631617 1.982650 1.117123

Things to note:

• The data has been chunked along rows.
• The initial fit is done with the biglm function.
• The model is updated with further chunks using the update function.

We now compare it to the in-memory version of lm to verify the results are the same.
b <- lm(ff, data=trees)
rbind(coef(a),coef(b))

(Intercept) log(Girth) log(Height)
[1,] -6.631617 1.98265 1.117123
[2,] -6.631617 1.98265 1.117123

Other packages that follow these lines, particularly with classification using SVMs, are LiblineaR, and RSofia.

15.1.1 Summary Statistics from RAM
If you are not going to do any model fitting, and all you want is efficient filtering, selection and summary statistics,
then a lot of my warnings above are irrelevant. For these purposes, the facilities provided by base, stats, and dplyr
are probably enough. If the data is large, however, these facilities may be too slow. If your data fits into RAM, but
speed bothers you, take a look at the data.table package. The syntax is less friendly than dplyr, but data.table is
BLAZING FAST compared to competitors. Here is a little benchmark2.

First, we setup the data.
library(data.table)

n <- 1e6 # number of rows
k <- c(200,500) # number of distinct values for each 'group_by' variable
p <- 3 # number of variables to summarize

L1 <- sapply(k, function(x) as.character(sample(1:x, n, replace = TRUE)))
L2 <- sapply(1:p, function(x) rnorm(n))

tbl <- data.table(L1,L2) %>%
setnames(c(paste("v",1:length(k),sep=""), paste("x",1:p,sep="")))

tbl_dt <- tbl
tbl_df <- tbl %>% as.data.frame

We compare the aggregation speeds. Here is the timing for dplyr.
library(dplyr)
system.time(tbl_df %>%

2The code was contributed by Liad Shekel.

194

CHAPTER 15. MEMORY EFFICIENCY 15.2. COMPUTING FROM A DATABASE

group_by(v1,v2) %>%
summarize(
x1 = sum(abs(x1)),
x2 = sum(abs(x2)),
x3 = sum(abs(x3))
)

)

user system elapsed
0.836 0.145 1.050

And now the timing for data.table.
system.time(
tbl_dt[, .(x1 = sum(abs(x1)), x2 = sum(abs(x2)), x3 = sum(abs(x3))), .(v1,v2)]
)

user system elapsed
0.793 0.167 0.836

The winner is obvious. Let’s compare filtering (i.e. row subsets, i.e. SQL’s SELECT).
system.time(
tbl_df %>% filter(v1 == "1")
)

user system elapsed
0.319 0.114 0.432
system.time(
tbl_dt[v1 == "1"]
)

user system elapsed
0.053 0.065 0.087

15.2 Computing from a Database
The early solutions to oversized data relied on storing your data in some DBMS such as MySQL, PostgresSQL, SQLite,
H2, Oracle, etc. Several R packages provide interfaces to these DBMSs, such as sqldf, RDBI, RSQite. Some will
even include the DBMS as part of the package itself.

Storing your data in a DBMS has the advantage that you can typically rely on DBMS providers to include very efficient
algorithms for the queries they support. On the downside, SQL queries may include a lot of summary statistics, but
will rarely include model fitting3. This means that even for simple things like linear models, you will have to revert
to R’s facilities– typically some sort of EMA with chunking from the DBMS. For this reason, and others, we prefer to
compute from efficient file structures, as described in Section 15.3.

If, however, you have a powerful DBMS around, or you only need summary statistics, or you are an SQL master, keep
reading.

The package RSQLite includes an SQLite server, which we now setup for demonstration. The package dplyr,
discussed in the Hadleyverse Chapter 21, will take care of translating the dplyr syntax, to the SQL syntax of the
DBMS. The following example is taken from the dplyr Databases vignette5.
library(RSQLite)
library(dplyr)

file.remove('my_db.sqlite3')
my_db <- src_sqlite(path = "my_db.sqlite3", create = TRUE)

3This is slowly changing. Indeed, Microsoft’s SQL Server 2016 is already providing in-database-analytics4, and other will surely follow.
5https://cran.r-project.org/web/packages/dplyr/vignettes/databases.html

195

https://cran.r-project.org/web/packages/dplyr/vignettes/databases.html

15.3. COMPUTING FROM EFFICIENT FILE STRUCTRURES CHAPTER 15. MEMORY EFFICIENCY

library(nycflights13)
flights_sqlite <- copy_to(
dest= my_db,
df= flights,
temporary = FALSE,
indexes = list(c("year", "month", "day"), "carrier", "tailnum"))

Things to note:

• src_sqlite to start an empty table, managed by SQLite, at the desired path.
• copy_to copies data from R to the database.
• Typically, setting up a DBMS like this makes no sense, since it requires loading the data into RAM, which is

precisely what we want to avoid.

We can now start querying the DBMS.
select(flights_sqlite, year:day, dep_delay, arr_delay)

filter(flights_sqlite, dep_delay > 240)

15.3 Computing From Efficient File Structrures
It is possible to save your data on your storage device, without the DBMS layer to manage it. This has several
advantages:

• You don’t need to manage a DBMS.
• You don’t have the computational overhead of the DBMS.
• You may optimize the file structure for statistical modelling, and not for join and summary operations, as in

relational DBMSs.

There are several facilities that allow you to save and compute directly from your storage:

1. Memory Mapping: Where RAM addresses are mapped to a file on your storage. This extends the RAM to
the capacity of your storage (HD, SSD,…). Performance slightly deteriorates, but the access is typically very
fast. This approach is implemented in the bigmemory package.

2. Efficient Binaries: Where the data is stored as a file on the storage device. The file is binary, with a well
designed structure, so that chunking is easy. This approach is implemented in the ff package, and the commercial
RevoScaleR package.

Your algorithms need to be aware of the facility you are using. For this reason each facility (bigmemory, ff,
RevoScaleR,…) has an eco-system of packages that implement various statistical methods using that facility. As a
general rule, you can see which package builds on a package using the Reverse Depends entry in the package description.
For the bigmemory package, for instance, we can see6 that the packages bigalgebra, biganalytics, bigFastlm,
biglasso, bigpca, bigtabulate, GHap, and oem, build upon it. We can expect this list to expand.

Here is a benchmark result, from Wang et al. (2015). It can be seen that ff and bigmemory have similar performance,
while RevoScaleR (RRE in the figure) outperforms them. This has to do both with the efficiency of the binary
representation, but also because RevoScaleR is inherently parallel. More on this in the Parallelization Chapter 16.

6https://cran.r-project.org/web/packages/bigmemory/index.html

196

https://cran.r-project.org/web/packages/bigmemory/index.html

CHAPTER 15. MEMORY EFFICIENCY 15.3. COMPUTING FROM EFFICIENT FILE STRUCTRURES

15.3.1 bigmemory
We now demonstrate the workflow of the bigmemory package. We will see that bigmemory, with it’s big.matrix
object is a very powerful mechanism. If you deal with big numeric matrices, you will find it very useful. If you deal
with big data frames, or any other non-numeric matrix, bigmemory may not be the appropriate tool, and you should
try ff, or the commercial RevoScaleR.
download.file("http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/BSAPUFS/Downloads/2010_Carrier_PUF.zip", "2010_Carrier_PUF.zip")
unzip(zipfile="2010_Carrier_PUF.zip")

library(bigmemory)
x <- read.big.matrix("data/2010_BSA_Carrier_PUF.csv", header = TRUE,

backingfile = "airline.bin",
descriptorfile = "airline.desc",
type = "integer")

dim(x)

[1] 2801660 11
pryr::object_size(x)

696 B
class(x)

[1] "big.matrix"
attr(,"package")
[1] "bigmemory"

Things to note:

• The basic building block of the bigmemory ecosystem, is the big.matrix class, we constructed with
read.big.matrix.

• read.big.matrix handles the import to R, and the saving to a memory mapped file. The implementation is
such that at no point does R hold the data in RAM.

• The memory mapped file will be there after the session is over. It can thus be called by other R sessions using
attach.big.matrix("airline.desc"). This will be useful when parallelizing.

• pryr::object_size return the size of the object. Since x holds only the memory mappings, it is much smaller
than the 100MB of data that it holds.

We can now start computing with the data. Many statistical procedures for the big.matrix object are provided by the
biganalytics package. In particular, the biglm.big.matrix and bigglm.big.matrix functions, provide an interface
from big.matrix objects, to the EMA linear models in biglm::biglm and biglm::bigglm.
library(biganalytics)
biglm.2 <- bigglm.big.matrix(BENE_SEX_IDENT_CD~CAR_LINE_HCPCS_CD, data=x)
coef(biglm.2)

(Intercept) CAR_LINE_HCPCS_CD
1.537848e+00 1.210282e-07

Other notable packages that operate with big.matrix objects include:

• bigtabulate: Extend the bigmemory package with ‘table’, ‘tapply’, and ‘split’ support for ‘big.matrix’ objects.
• bigalgebra: For matrix operation.
• bigpca: principle components analysis (PCA), or singular value decomposition (SVD).
• bigFastlm: for (fast) linear models.
• biglasso: extends lasso and elastic nets.
• GHap: Haplotype calling from phased SNP data.

197

15.4. FF CHAPTER 15. MEMORY EFFICIENCY

15.3.2 bigstep
The bigstep7 package uses the bigmemory framework to perform stepwise model selction, when the data cannot fit
into RAM.

TODO

15.4 ff
The ff packages replaces R’s in-RAM storage mechanism with on-disk (efficient) storage. Unlike bigmemory, ff
supports all of R vector types such as factors, and not only numeric. Unlike big.matrix, which deals with (numeric)
matrices, the ffdf class can deal with data frames.

Here is an example. First open a connection to the file, without actually importing it using the LaF::laf_open_csv
function.
.dat <- LaF::laf_open_csv(filename = "data/2010_BSA_Carrier_PUF.csv",

column_types = c("integer", "integer", "categorical", "categorical", "categorical", "integer", "integer", "categorical", "integer", "integer", "integer"),
column_names = c("sex", "age", "diagnose", "healthcare.procedure", "typeofservice", "service.count", "provider.type", "servicesprocessed", "place.served", "payment", "carrierline.count"),
skip = 1)

Now write the data to local storage as an ff data frame, using laf_to_ffdf.
data.ffdf <- ffbase::laf_to_ffdf(laf = .dat)
head(data.ffdf)

ffdf (all open) dim=c(2801660,6), dimorder=c(1,2) row.names=NULL
ffdf virtual mapping
PhysicalName VirtualVmode PhysicalVmode AsIs
sex sex integer integer FALSE
age age integer integer FALSE
diagnose diagnose integer integer FALSE
healthcare.procedure healthcare.procedure integer integer FALSE
typeofservice typeofservice integer integer FALSE
service.count service.count integer integer FALSE
VirtualIsMatrix PhysicalIsMatrix PhysicalElementNo
sex FALSE FALSE 1
age FALSE FALSE 2
diagnose FALSE FALSE 3
healthcare.procedure FALSE FALSE 4
typeofservice FALSE FALSE 5
service.count FALSE FALSE 6
PhysicalFirstCol PhysicalLastCol PhysicalIsOpen
sex 1 1 TRUE
age 1 1 TRUE
diagnose 1 1 TRUE
healthcare.procedure 1 1 TRUE
typeofservice 1 1 TRUE
service.count 1 1 TRUE
ffdf data
sex age diagnose healthcare.procedure typeofservice
1 1 1 NA 99213 M1B
2 1 1 NA A0425 O1A
3 1 1 NA A0425 O1A
4 1 1 NA A0425 O1A
5 1 1 NA A0425 O1A
6 1 1 NA A0425 O1A
7 1 1 NA A0425 O1A
8 1 1 NA A0425 O1A

7https://cran.r-project.org/web/packages/bigstep/vignettes/bigstep.html

198

https://cran.r-project.org/web/packages/bigstep/vignettes/bigstep.html

CHAPTER 15. MEMORY EFFICIENCY 15.4. FF

: : : : : :
2801653 2 6 V82 85025 T1D
2801654 2 6 V82 87186 T1H
2801655 2 6 V82 99213 M1B
2801656 2 6 V82 99213 M1B
2801657 2 6 V82 A0429 O1A
2801658 2 6 V82 G0328 T1H
2801659 2 6 V86 80053 T1B
2801660 2 6 V88 76856 I3B
service.count
1 1
2 1
3 1
4 2
5 2
6 3
7 3
8 4
: :
2801653 1
2801654 1
2801655 1
2801656 1
2801657 1
2801658 1
2801659 1
2801660 1

We can verify that the ffdf data frame has a small RAM footprint.
pryr::object_size(data.ffdf)

392 kB

The ffbase package provides several statistical tools to compute with ff class objects. Here is simple table.
ffbase::table.ff(data.ffdf$age)

##
1 2 3 4 5 6
517717 495315 492851 457643 419429 418705

The EMA implementation of biglm::biglm and biglm::bigglm have their ff versions.
library(biglm)
mymodel.ffdf <- biglm(payment ~ factor(sex) + factor(age) + place.served,

data = data.ffdf)
summary(mymodel.ffdf)

Large data regression model: biglm(payment ~ factor(sex) + factor(age) + place.served, data = data.ffdf)
Sample size = 2801660
Coef (95% CI) SE p
(Intercept) 97.3313 96.6412 98.0214 0.3450 0.0000
factor(sex)2 -4.2272 -4.7169 -3.7375 0.2449 0.0000
factor(age)2 3.8067 2.9966 4.6168 0.4050 0.0000
factor(age)3 4.5958 3.7847 5.4070 0.4056 0.0000
factor(age)4 3.8517 3.0248 4.6787 0.4135 0.0000
factor(age)5 1.0498 0.2030 1.8965 0.4234 0.0132
factor(age)6 -4.8313 -5.6788 -3.9837 0.4238 0.0000
place.served -0.6132 -0.6253 -0.6012 0.0060 0.0000

Things to note:

199

15.5. DISK.FRAME CHAPTER 15. MEMORY EFFICIENCY

• biglm::biglm notices the input of of class ffdf and calls the appropriate implementation.
• The model formula, payment ~ factor(sex) + factor(age) + place.served, includes factors which cause

no difficulty.
• You cannot inspect the factor coding (dummy? effect?) using model.matrix. This is because EMAs never really

construct the whole matrix, let alone, save it in memory.

15.5 disk.frame
TODO: https://github.com/xiaodaigh/disk.frame

15.6 matter
Memory-efficient reading, writing, and manipulation of structured binary data on disk as vectors, matrices, arrays,
lists, and data frames.

TODO

15.7 iotools
A low level facility for connecting to on-disk binary storage. Unlike ff, and bigmemory, it behaves like native R
objects, with their copy-on-write policy. Unlike reader, it allows chunking. Unlike read.csv, it allows fast I/O.
iotools is thus a potentially very powerfull facility. See Arnold et al. (2015) for details.

TODO

15.8 HDF5
Like ff, HDF5 is an on-disk efficient file format. The package h5 is interface to the “HDF5” library supporting fast
storage and retrieval of R-objects like vectors, matrices and arrays.

TODO

15.9 DelayedArray
An abstraction layer for operations on array objects, which supports various backend storage of arrays such as:

• In RAM: base8, Matrix9, DelayedArray10.
• In Disk: HDF5Array11, matterArray12.

Link13 Several application packages already build upon the DelayedArray pacakge:

• DelayedMatrixStats14: Functions that Apply to Rows and Columns of DelayedArray Objects.
• beachmat15 C++ API for (most) DelayedMatrix backends.

15.10 Computing from a Distributed File System
If your data is SOOO big that it cannot fit on your local storage, you will need a distributed file system or DBMS. We
do not cover this topic here, and refer the reader to the RHipe, RHadoop, and RSpark packages and references
therein.

8
9

10https://bioconductor.org/packages/release/bioc/html/DelayedArray.html
11https://bioconductor.org/packages/release/bioc/html/HDF5Array.html
12https://github.com/PeteHaitch/matterArray
13https://bioconductor.org/packages/release/bioc/html/DelayedArray.html
14https://github.com/PeteHaitch/DelayedMatrixStats
15

200

https://github.com/xiaodaigh/disk.frame
https://bioconductor.org/packages/release/bioc/html/DelayedArray.html
https://bioconductor.org/packages/release/bioc/html/HDF5Array.html
https://github.com/PeteHaitch/matterArray
https://bioconductor.org/packages/release/bioc/html/DelayedArray.html
https://github.com/PeteHaitch/DelayedMatrixStats

CHAPTER 15. MEMORY EFFICIENCY 15.11. BIBLIOGRAPHIC NOTES

15.11 Bibliographic Notes
An absolute SUPERB review on computing with big data is Wang et al. (2015), and references therein (Kane et al.
(2013) in particular). Michael Kane also reports his benchmarks16 of in-memory, vs. DBMS operations. Here is also
an excellent talk by Charles DiMaggio17. For an up-to-date list of the packages that deal with memory constraints,
see the Large memory and out-of-memory data section in the High Performance Computing18 task view. For a
list of resources to interface to DMBS, see the Databases with R19 task view. For more on data analysis from disk,
and not from RAM, see Peter_Hickey’s JSM talk20.

15.12 Practice Yourself

16http://technodocbox.com/C_and_CPP/112025624-Massive-data-shared-and-distributed-memory-and-concurrent-programming-
bigmemory-and-foreach.html

17http://www.columbia.edu/~sjm2186/EPIC_R/EPIC_R_BigData.pdf
18https://cran.r-project.org/web/views/HighPerformanceComputing.html
19https://cran.r-project.org/web/views/Databases.html
20https://www.peterhickey.org/slides/2017/2017-08-01_Peter_Hickey_JSM.pdf

201

http://technodocbox.com/C_and_CPP/112025624-Massive-data-shared-and-distributed-memory-and-concurrent-programming-bigmemory-and-foreach.html
http://technodocbox.com/C_and_CPP/112025624-Massive-data-shared-and-distributed-memory-and-concurrent-programming-bigmemory-and-foreach.html
http://www.columbia.edu/~sjm2186/EPIC_R/EPIC_R_BigData.pdf
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://cran.r-project.org/web/views/Databases.html
https://www.peterhickey.org/slides/2017/2017-08-01_Peter_Hickey_JSM.pdf

15.12. PRACTICE YOURSELF CHAPTER 15. MEMORY EFFICIENCY

202

Chapter 16

Parallel Computing

You would think that because you have an expensive multicore computer your computations will speed up. Well,
unless you actively make sure of that, this will not happen. By default, the operating system will allocate each R
session to a single core. You may wonder: why can’t I just write code, and let R (or any other language) figure out
what can be parallelised. Sadly, that’s not how things work. It is very hard to design software that can parallelise
any algorithm, while adapting to your hardware, operating system, and other the software running on your device. A
lot of parallelisation still has to be explicit, but stay tuned for technologies like Ray1, Apache Spark2, Apache Flink3,
Chapel4, PyTorch5, and others, which are making great advances in handling parallelism for you.

To parallelise computationsin with R, we will distinguish between two types of parallelism:

1. Parallel R: where the parallelism is managed with R. Discussed in Section 16.3.
2. Parallel Extensions: where R calls specialized libraries/routines/software that manage the parallelism them-

selves. Discussed in Section 16.4.

16.1 When and How to Parallelise?
Your notice computations are too slow, and wonder “why is that?” Should you store your data differently? Should
you use different software? Should you buy more RAM? Should you “go cloud”?

Unlike what some vendors will make you think, there is no one-size-fits-all solution to speed problems. Solving a RAM
bottleneck may consume more CPU. Solving a CPU bottleneck may consume more RAM. Parallelisation means using
multiple CPUs simultaneously. It will thus aid with CPU bottlenecks, but may consume more RAM. Parallelising
is thus ill advised when dealing with a RAM bottleneck. Memory bottlenecks are released with efficient memory
representations or out-of-memory algorithms (Chapters 14 and 15).

When deciding if, and how, to parallelise, it is crucial that you diagnose your bottleneck. The good news is- that
diagnostics is not too hard. Here are a few pointers:

1. You never drive without looking at your dashboard; you should never program without looking at your system
monitors. Windows users have their Task Manager6; Linux users have top7, or preferably, htop8; Mac users have
the Activity Monitor9. The system monitor will inform you how your RAM and CPUs are being used.

2. If you forcefully terminate your computation, and R takes a long time to respond, you are probably dealing with
a RAM bottleneck.

3. Profile your code to detect how much RAM and CPU are consumed by each line of code. See Hadley’s guide10.
1https://rise.cs.berkeley.edu/projects/ray/
2https://spark.apache.org
3https://flink.apache.org
4https://chapel-lang.org
5https://pytorch.org
6https://en.wikipedia.org/wiki/Task_Manager_(Windows)
7https://en.wikipedia.org/wiki/Top_(software)
8https://en.wikipedia.org/wiki/Htop
9https://www.howtogeek.com/227240/how-to-monitor-your-macs-health-with-activity-monitor/

10http://adv-r.had.co.nz/Profiling.html

203

https://rise.cs.berkeley.edu/projects/ray/
https://spark.apache.org
https://flink.apache.org
https://chapel-lang.org
https://pytorch.org
https://en.wikipedia.org/wiki/Task_Manager_(Windows)
https://en.wikipedia.org/wiki/Top_(software)
https://en.wikipedia.org/wiki/Htop
https://www.howtogeek.com/227240/how-to-monitor-your-macs-health-with-activity-monitor/
http://adv-r.had.co.nz/Profiling.html

16.2. TERMINOLOGY CHAPTER 16. PARALLEL COMPUTING

In the best possible scenario, the number of operations you can perform scales with the number of processors:

𝑡𝑖𝑚𝑒 ∗ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 = 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

. This is called perfect scaling. It is rarely observed in practice, since parallelising incurs some computational overhead:
setting up environments, copying memory, … For this reason, the typical speedup is sub-linear. Computer scientists
call this Amdahl’s law11; remember it.

16.2 Terminology
Here are some terms we will be needing.

16.2.1 Hardware:
• Cluster: A collection of interconnected computers.
• Node/Machine: A single physical machine in the cluster. Components of a single node do not communicate

via the cluster’s network, but rather, via the node’s circuitry.
• Processor/Socket/CPU/Core: The physical device in a computer that make computations. A modern laptop

will have about 4-8 cores. A modern server may have hundreds of cores.
• RAM: Random Access Memory. One of many types of memory in a computer. Possibly the most relevant type

of memory when computing with data.
• GPU: Graphical Processing Unit. A computing unit, separate from the CPU. Originally dedicated to graphics

and gaming, thus its name. Currently, GPUs are extremely popular for fitting and servicing Deep Neural
Networks.

• TPU: Tensor Processing Unit. A computing unit, dedicated to servicing and fitting Deep Neural Networks.

16.2.2 Software:
• Process: A sequence of instructions in memory, with accompanying data. Various processes typically see

different locations of memory. Interpreted languages like R, and Python operate on processes.
• Thread: A sub-sequence of instructions, within a process. Various threads in a process may see the same

memory. Compiled languages like C, C++, may operate on threads.

16.3 Parallel R
R provides many frameworks to parallelise execution. The operating system allocates each R session to a single process.
Any parallelisation framework will include the means for starting R processes, and the means for communicating
between these processes.
Except for developers, a typical user will probably use some high-level R package which will abstract away these stages.

16.3.1 Starting a New R Processes
A R process may strat a new R process in various ways. The new process may be called a child process, a slave process,
and many other names. Here are some mechanisms to start new processes.

• Fork: Imagine the operating system making a copy of the currently running R process. The fork mechanism,
unique to Unix and Linux, clones a process with its accompanying instructions and data. All forked processes
see the same memory in read-only mode. Copies of the data are made when the process needs to change the
data.

• System calls: Imagine R as a human user, that starts a new R session. This is not a forked porcess. The new
process, called spawn process cannot access the data and instructions of the parent process.

16.3.2 Inter-process Communication
Now that you have various R processes running, how do they communicate?

11https://en.wikipedia.org/wiki/Amdahl%27s_law

204

https://en.wikipedia.org/wiki/Amdahl%27s_law

CHAPTER 16. PARALLEL COMPUTING 16.3. PARALLEL R

• Socket: imagine each R process as a standalone computer in the network. Data can be sent via a network
interface. Unlike PVM, MPI and other standards, information sent does not need to be format in any particular
way, provided that the reciever knows how it is formatted. This is not a problem when sending from R to R.

• Parallel Virtual Machine (PVM): a communication protocol and software, developed the University of Ten-
nessee, Oak Ridge National Laboratory and Emory University, and first released in 1989. Runs on Windows and
Unix, thus allowing to compute on clusters running these two operating systems. Noways, it is mostly replaced
by MPI. The same group responsible for PVM will later deliver pbdR 16.3.6.

• Message Passing Interface (MPI): A communication protocol that has become the de-facto standard for
communication in large distributed clusters. Particularly, for heterogeneous computing clusters with varying
operating systems and hardware. The protocol has various software implementations such as OpenMPI12 and
MPICH13, Deino14, LAM/MPI15. Interestingly, large computing clusters use MPI, while modern BigData analysis
platforms such as Spark, and Ray do not. Why is this? See Jonathan Dursi’s excellent blog post16.

• NetWorkSpaces (NWS): A master-slave communication protocol where the master is not an R-session, but
rather, an NWS server.

For more on inter-process communication, see Wiki17.

16.3.3 The parallel Package
The parallel package, maintained by the R-core team, was introduced in 2011 to unify two popular parallisation
packages: snow and multicore. The multicore package was designed to parallelise using the fork mechanism,
on Linux machines. The snow package was designed to parallelise Socket, PVM, MPI, and NWS mechanisms. R
processes started with snow are not forked, so they will not see the parent’s data. Data will have to be copied to child
processes. The good news: snow can start R processes on Windows machines, or remotely machines in the cluster.

TOOD: add example.

16.3.4 The foreach Package
For reasons detailed in Kane et al. (2013), we recommend the foreach parallelisation package (Analytics and Weston,
2015). It allows us to:

1. Decouple between the parallel algorithm and the parallelisation mechanism: we write parallelisable code once,
and can later switch between parallelisation mechanisms. Currently supported mechanisms include:

• fork: Called with the doMC backend.
• MPI, VPM, NWS: Called with the doSNOW or doMPI backends.
• futures: Called with the doFuture backend.
• redis: Called with the doRedis backend. Similar to NWS, only that data made available to different processes

using Redis18.
• Future mechanism may also be supported.

2. Combine with the big.matrix object from Chapter 15 for shared memory parallelisation: all the machines may
see the same data, so that we don’t need to export objects from machine to machine.

Remark. I personally prefer the multicore mechanism, with the doMC adapter for foreach. I will not use this
combo, however, because multicore will not work on Windows machines, and will not work over a network. I will
thus use the more general snow and doParallel combo. If you do happen to run on Linux, or Unix, you will want to
replace all doParallel functionality with doMC.

Let’s start with a simple example, taken from “Getting Started with doParallel and foreach”19.

12https://en.wikipedia.org/wiki/Open_MPI
13https://en.wikipedia.org/wiki/MPICH
14http://mpi.deino.net/
15https://en.wikipedia.org/wiki/LAM/MPI
16https://www.dursi.ca/post/hpc-is-dying-and-mpi-is-killing-it.html
17https://en.wikipedia.org/wiki/Inter-process_communication
18https://en.wikipedia.org/wiki/Redis
19http://debian.mc.vanderbilt.edu/R/CRAN/web/packages/doParallel/vignettes/gettingstartedParallel.pdf

205

https://en.wikipedia.org/wiki/Open_MPI
https://en.wikipedia.org/wiki/MPICH
http://mpi.deino.net/
https://en.wikipedia.org/wiki/LAM/MPI
https://www.dursi.ca/post/hpc-is-dying-and-mpi-is-killing-it.html
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Redis
http://debian.mc.vanderbilt.edu/R/CRAN/web/packages/doParallel/vignettes/gettingstartedParallel.pdf

16.3. PARALLEL R CHAPTER 16. PARALLEL COMPUTING

library(doParallel)
cl <- makeCluster(2, type = 'SOCK')
registerDoParallel(cl)
result <- foreach(i=1:3) %dopar% sqrt(i)
class(result)

[1] "list"
result

[[1]]
[1] 1
##
[[2]]
[1] 1.414214
##
[[3]]
[1] 1.732051

Things to note:

• makeCluster creates an object with the information our cluster. On a single machine it is very simple. On a
cluster of machines, you will need to specify the IP20 addresses, or other identifier, of the machines.

• registerDoParallel is used to inform the foreach package of the presence of our cluster.
• The foreach function handles the looping. In particular note the %dopar% operator that ensures that looping

is in parallel. %dopar% can be replaced by %do% if you want serial looping (like the for loop), for instance, for
debugging.

• The output of the various machines is collected by foreach to a list object.
• In this simple example, no data is shared between machines so we are not putting the shared memory capabilities

to the test.
• We can check how many workers were involved using the getDoParWorkers() function.
• We can check the parallelisation mechanism used with the getDoParName() function.

Here is a more involved example. We now try to make Bootstrap inference on the coefficients of a logistic regression.
Bootstrapping means that in each iteration, we resample the data, and refit the model.
x <- iris[which(iris[,5] != "setosa"), c(1,5)]
trials <- 1e4
r <- foreach(icount(trials), .combine=cbind) %dopar% {

ind <- sample(100, 100, replace=TRUE)
result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit))
coefficients(result1)

}

Things to note:

• As usual, we use the foreach function with the %dopar% operator to loop in parallel.
• The iterators::icount function generates a counter that iterates over its argument.
• The object x is magically avaiable at all child processes, even though we did not fork R. This is thanks to forach

which guesses what data to pass to children.
• The .combine=cbind argument tells the foreach function how to combine the output of different machines, so

that the returned object is not the default list.
• To run a serial version, say for debugging, you only need to replace %dopar% with %do%.

r <- foreach(icount(trials), .combine=cbind) %do% {
ind <- sample(100, 100, replace=TRUE)
result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit))
coefficients(result1)
}

20https://en.wikipedia.org/wiki/IP_address

206

https://en.wikipedia.org/wiki/IP_address

CHAPTER 16. PARALLEL COMPUTING 16.3. PARALLEL R

Let’s see how we can combine the power of bigmemory and foreach by creating a file mapped big.matrix object,
which is shared by all machines. The following example is taken from Kane et al. (2013), and uses the big.matrix
object we created in Chapter 15.
library(bigmemory)
x <- attach.big.matrix("airline.desc")

library(foreach)
library(doSNOW)
cl <- makeSOCKcluster(names=rep("localhost", 4)) # make a cluster of 4 machines
registerDoSNOW(cl) # register machines for foreach()
xdesc <- describe(x)

G <- split(1:nrow(x), x[, "BENE_AGE_CAT_CD"]) # Split the data along `BENE_AGE_CAT_CD`.

GetDepQuantiles <- function(rows, data) {
quantile(data[rows, "CAR_LINE_ICD9_DGNS_CD"],

probs = c(0.5, 0.9, 0.99),
na.rm = TRUE)

} # Function to extract quantiles

qs <- foreach(g = G, .combine = rbind) %dopar% {
library("bigmemory")
x <- attach.big.matrix(xdesc)
GetDepQuantiles(rows = g, data = x)
} # get quantiles, in parallel
qs

50% 90% 99%
result.1 558 793 996
result.2 518 789 996
result.3 514 789 996
result.4 511 789 996
result.5 511 790 996
result.6 518 796 995

Things to note:

• bigmemory::attach.big.matrix creates an R big.matrix object from a matrix already existing on disk. See
Section 15.3.1 for details.

• snow::makeSOCKcluster creates cluster of R processes communicating via sockets.
• bigmemory::describe recovres a pointer to the big.matrix object, that will be used to call it from various child

proceeses.
• Because R processes were not forked, each child need to load the bigmemory package separately.

Can only big.matrix objects be used to share data between child processes? No. There are many mechanism to share
data. We use big.matrix merely for demonstration.

16.3.4.1 Fork or Socket?

On Linux and Unix machines you can use both the fork mechanism of the multicore package, and the socket mechanism
of the snow package. Which is preferable? Fork, if available. Here is a quick comparison.
library(nycflights13)
flights$ind <- sample(1:10, size = nrow(flights), replace = TRUE) #split data to 10.

timer <- function(i) max(flights[flights$ind==i,"distance"]) # an arbitrary function

library(doMC)
registerDoMC(cores = 10) # make a fork cluster

207

16.4. PARALLEL EXTENSIONS CHAPTER 16. PARALLEL COMPUTING

system.time(foreach (i=1:10, .combine = 'c') %dopar% timer(i)) # time the fork cluster

user system elapsed
0.020 0.429 0.453
library(parallel)
library(doParallel)
cl <- makeCluster(10, type="SOCK") # make a socket cluster.
registerDoParallel(cl)
system.time(foreach (i=1:10, .combine = 'c') %dopar% timer(i)) # time the socket cluster

user system elapsed
1.099 0.138 2.050
stopCluster(cl) # close the cluster

Things to note:

• doMC::registerDoMC was used to stard and register the forked cluster.
• parallel::makeCluster was used to stard the socket cluster. It was registered with doParallel::registerDoParallel.
• After registering the cluster, the foreach code is exactly the same.
• The clear victor is fork: sessions start faster, and computations finish faster. Sadly, we recall that forking is

impossible on Windows machines, or in clusters that consist of several machines.
• We did not need to pass flights to the different workers. foreach::foreach took care of that for us.

For fun, let’s try the same with data.table.
library(data.table)
flights.DT <- as.data.table(flights)
system.time(flights.DT[,max(distance),ind])

user system elapsed
0.052 0.000 0.016

No surprises there. If you can store your data in RAM, data.table is still the fastest.

16.3.5 Rdsm
TODO

16.3.6 pbdR
TODO

16.4 Parallel Extensions
As we have seen, R can be used to write explicit parallel algorithms. Some algorithms, however, are so basic that
others have already written and published their parallel versions. We call these parallel extensions. Linear algebra,
and various machine learning algorithms are examples we now discuss.

16.4.1 Parallel Linear Algebra
R ships with its own linear algebra algorithms, known as Basic Linear Algebra Subprograms: BLAS21. To learn the
history of linear algebra in R, read Maechler and Bates (2006). For more details, see our Bibliographic notes. BLAS
will use a single core, even if your machines has many more. There are many linear algebra libraries out there22, and
you don’t need to be a programmer to replace R’s BLAS. Cutting edge linear algebra libraries such as OpenBLAS23,

21http://www.netlib.org/blas/
22https://en.wikipedia.org/wiki/Comparison_of_linear_algebra_libraries
23https://github.com/xianyi/OpenBLAS

208

http://www.netlib.org/blas/
https://en.wikipedia.org/wiki/Comparison_of_linear_algebra_libraries
https://github.com/xianyi/OpenBLAS

CHAPTER 16. PARALLEL COMPUTING 16.4. PARALLEL EXTENSIONS

Plasma24, and Intel’s MKL25, will do your linear algebra while exploiting the many cores of your machine. This is
very useful, since all machines today have multiple cores, and linear algebra is at the heart of all statistics and machine
learning.

Installing these libraries requires some knowldge in system administration. It is fairly simple under Ubuntu and Debian
linux, and may be more comlicated on other operating systems. Installing these is outside the scope of this text. We
will thus content ourselves with the following pointers:

• Users can easily replace the BLAS libraries shipped with R, with other libraries such as OpenBLAS, and MKL.
These will parallelise linear algebra for you.

• Installation is easier for Ubuntu and Debian Linux, but possible in all systems.
• For specific tasks, such as machine learning, you may not need an all-pupose paralle linear algebra library. If you

want machine learning in parallel, there are more specialized libraries. In the followig, we demonstrate Spark
(16.4.3), and H2O (16.4.4).

• Read our word of caution on nested parallelism (16.5) if you use parallel linear algebra within child R processes.

16.4.2 Parallel Data Munging with data.table
We have discussed data.table in Chapter 4. We now recall it to emphasize that various operations in data.table
are done in parallel, using OpenMP26. For instance, file imports can done in paralle: each thread is responsible to
impot a subset of the file. First, we check how many threads data.table is setup to use?
library(data.table)
getDTthreads(verbose=TRUE)

omp_get_num_procs()==8
R_DATATABLE_NUM_PROCS_PERCENT=="" (default 50)
R_DATATABLE_NUM_THREADS==""
omp_get_thread_limit()==2147483647
omp_get_max_threads()==1
OMP_THREAD_LIMIT==""
OMP_NUM_THREADS==""
data.table is using 4 threads. This is set on startup, and by setDTthreads(). See ?setDTthreads.
RestoreAfterFork==true

[1] 4

Things to note:

• data.table::getDTthreads to get some info on my machine, and curent data.table setup. Use the
verbose=TRUE flag for extra details.

• omp_get_max_threads informs me how many threads are available in my machine.
• My current data.table configuraton is in the last line of the output.

We then import with data.table::fread and inspect CPU usage with the top linux command.
air <- fread('data/2010_BSA_Carrier_PUF.csv')

Remark. An amazing feature of data.table is that it will not parallelize when called from a forked process. This
behaviour will avoid the nested parallelism we cautioned from in 16.5.

After doing parallel imports, let’s try parallel aggregation.
n <- 5e6
N <- n
k <- 1e4

setDTthreads(threads = 0) # use all available cores
getDTthreads() # print available threads

24https://bitbucket.org/icl/plasma/src/default/
25https://software.intel.com/en-us/mkl
26https://en.wikipedia.org/wiki/OpenMP

209

https://bitbucket.org/icl/plasma/src/default/
https://software.intel.com/en-us/mkl
https://en.wikipedia.org/wiki/OpenMP

16.4. PARALLEL EXTENSIONS CHAPTER 16. PARALLEL COMPUTING

from 2019-10-08 16-00-34.bb

Figure 16.1: The CPU usage of fread() is 384.4%. This is because data.table is setup to use 4 threads simultanously.

[1] 8
DT <- data.table(x = rep_len(runif(n), N),

y = rep_len(runif(n), N),
grp = rep_len(sample(1:k, n, TRUE), N))

system.time(DT[, .(a = 1L), by = "grp"])

user system elapsed
0.420 0.020 0.074
setDTthreads(threads = 1) # use a single thread

system.time(DT[, .(a = 1L), by = "grp"])

user system elapsed
0.151 0.000 0.151

Things to note:

• Parallel aggregation is indeed much faster.
• Cores scaled by 8 fold. Time scaled by less. The scaling is not perfect. Remember Amdahl’s law.
• This example was cooked to emphasize the difference. You may not enjoy such speedups in all problems.

If the data does not fit in our RAM, we cannot enjoy data.tables. If the data is so large that it does not fit into
RAM27, nor into your local disk, you will need to store, and compute with it, in a distributed cluster. In the next
section, we present a very popular system for storing, munging, and learning, with massive datasets.

16.4.3 Spark
Spark is the brainchild of Matei Zaharia, in 2009, as part of his PhD studies at University of California, Berkeley ’s
AMPLab. To understand Spark we need some background.

The software that manages files on your disk is the file system28. On personal computers, you may have seen names like
FAT32, NTFS, EXT3, or others. Those are file systems for disks. If your data is too big to be stored on a single disk,

27Recall that you can buy servers wth 1TB of RAM and more. So we are talking about A LOT of data!
28https://en.wikipedia.org/wiki/File_system

210

https://en.wikipedia.org/wiki/File_system

CHAPTER 16. PARALLEL COMPUTING 16.4. PARALLEL EXTENSIONS

you may distribute it on several machines. When doing so, you will need a file systems that is designed for distributed
clusters. A good cluster file system29, is crucial for the performance of your cluster. Part of Google strength is in its
powerful file system, the Google File System30. If you are not at Google, you will not have access to this file system.
Luckily, there are many other alternatives. The Hadoop File System, HDFS31, that started at Yahoo, later donated
to the Apache Foundation, is a popular alternative. With the HDFS you can store files in a cluster.

For doing statistics, you need software that is compatible with the file system. This is true for all file systems, and in
particular, HDFS. A popular software suit that was designed to work with HDFS is Hadoop. Alas, Hadoop was not
designed for machine learning. Hadoop for reasons of fault tolerance, Hadoop stores its data disk. Machine learning
consists of a lot iterative algorithms that requires fast and repeated data reads. This is very slow if done from the
disk. This is where Spark comes in. Spark is a data oriented computing environment over distributed file systems.
Let’s parse that:

• “data oriented”: designed for statistics and machine learning, which require a lot of data, that is mostly read
and not written.

• “computing environment”: it less general than a full blown programming language, but it allows you to extend
it.

• “over distributed file systems”: it ingests data that is stored in distributed clusters, managed by HDFS or other
distributed file system.

Let’s start a Spark server on our local machine to get a feeling of it. We will not run from a cluster, so that you may
experiment with it yourself.
library(sparklyr)
spark_install(version = "2.4.0") # will download Spark on first run.
sc <- spark_connect(master = "local")

Things to note:

• spark_install will download and install Spark on your first run. Make sure to update the version number,
since my text may be outdated by the time you read it.

• I used the sparklyr package from RStudio. There is an alternative package from Apache: SparkR.
• spark_connect opens a connection to the (local) Spark server. When working in a cluster, with many machines,

the master= argumnt infrorms R which machine is the master, a.k.a. the “driver node”. Consult your cluster’s
documentation for connection details.

• After running spark_connect, the connection to the Sprak server will appear in RStudio’s Connection pane32.

Let’s load and aggregate some data:
library(nycflights13)
flights_tbl<- copy_to(dest=sc, df=flights, name='flights', overwrite = TRUE)
class(flights_tbl)

[1] "tbl_spark" "tbl_sql" "tbl_lazy" "tbl"
library(dplyr)
system.time(delay<-flights_tbl %>%

group_by(tailnum) %>%
summarise(
count=n(),
dist=mean(distance, na.rm=TRUE),
delay=mean(arr_delay, na.rm=TRUE)) %>%

filter(count>20, dist<2000, !is.na(delay)) %>%
collect())

user system elapsed
0.226 0.289 1.588

29https://en.wikipedia.org/wiki/Clustered_file_system
30https://en.wikipedia.org/wiki/Google_File_System
31https://en.wikipedia.org/wiki/Apache_Hadoop
32https://support.rstudio.com/hc/en-us/articles/115010915687-Using-RStudio-Connections

211

https://en.wikipedia.org/wiki/Clustered_file_system
https://en.wikipedia.org/wiki/Google_File_System
https://en.wikipedia.org/wiki/Apache_Hadoop
https://support.rstudio.com/hc/en-us/articles/115010915687-Using-RStudio-Connections

16.4. PARALLEL EXTENSIONS CHAPTER 16. PARALLEL COMPUTING

delay

A tibble: 2,961 x 4
tailnum count dist delay
<chr> <dbl> <dbl> <dbl>
1 N24211 130 1330. 7.7
2 N793JB 283 1529. 4.72
3 N657JB 285 1286. 5.03
4 N633AA 24 1587. -0.625
5 N9EAMQ 248 675. 9.24
6 N3GKAA 77 1247. 4.97
7 N997DL 63 868. 4.90
8 N318NB 202 814. -1.12
9 N651JB 261 1408. 7.58
10 N841UA 96 1208. 2.10
... with 2,951 more rows

Things to note:

• copy_to exports from R to Sprak. Typically, my data will already be waiting in Sprak, since the whole motivation
is that it does not fit on my disk.

• Notice the collect command at the end. As the name suggests, this will collect results from the various
worker/slave machines.

• I have used the dplyr syntax and not my favorite data.table syntax. This is because sparklyr currently supports
the splyr syntax, or plain SQL with the DBI package.

To make the most of it, you will porbably be running Spark on some cluster. You should thus consult your cluster’s
documentation in order to connect to it. In our particular case, the data is not very big so it fits into RAM. We can thus
compare performance to data.table, only to re-discover, than if data fits in RAM, there is no beating data.table.
library(data.table)
flight.DT <- data.table(flights)
system.time(flight.DT[,.(distance=mean(distance),delay=mean(arr_delay),count=.N),by=tailnum][count>20 & distance<2000 & !is.na(delay)])

user system elapsed
0.040 0.079 0.119

Let’s disconnect from the Spark server.
spark_disconnect(sc)

NULL

Spark comes with a set of learning algorithms called MLLib. Consult the online documentation33 to see which are
currently available. If your data is happily stored in a distributed Spark cluster, and the algorithm you want to run
is not available, you have too options: (1) use extensions or (2) write your own.

Writing your own algorithm and dispatching it to Spark can be done a-la apply style with sparklyr::spark_apply.
This, however, would typically be extremely inneficient. You are better off finding a Spark extension that does what
you need. See the sparklyr CRAN page34, and in particular the Reverse Depends section, to see which extensions
are available. One particular extension is rsparkling, which allows you to apply H2O’s massive library of learning
algorithms, on data stored in Spark. We start by presenting H2O.

16.4.4 H2O
H2O can be thought of as a library of efficient distributed learning algorithm, that run in-memory, where memory
considerations and parallelisation have been taken care of for you. Another way to think of it is as a “machine learning
service”. For a (massive) list of learning algorithms implemented in H2O, see their documentaion35. H2O can run as
a standalone server, or on top of Spark, so that it may use the Spark data frames. We start by working with H2O

33http://spark.apache.org/docs/latest/ml-classification-regression.html
34https://CRAN.R-project.org/package=sparklyr
35http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science.html#

212

http://spark.apache.org/docs/latest/ml-classification-regression.html
https://CRAN.R-project.org/package=sparklyr
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science.html#

CHAPTER 16. PARALLEL COMPUTING 16.4. PARALLEL EXTENSIONS

using H2O’s own data structures, using h2o package. We later discuss how to use H2O using Spark’s data structures
(16.4.4.1).
#install.packages("h2o")
library(h2o)

h2o.init(nthreads=2)

Connection successful!
##
R is connected to the H2O cluster:
H2O cluster uptime: 40 seconds 780 milliseconds
H2O cluster timezone: Etc/UTC
H2O data parsing timezone: UTC
H2O cluster version: 3.26.0.2
H2O cluster version age: 2 months and 13 days
H2O cluster name: H2O_started_from_R_rstudio_kxj197
H2O cluster total nodes: 1
H2O cluster total memory: 3.42 GB
H2O cluster total cores: 8
H2O cluster allowed cores: 8
H2O cluster healthy: TRUE
H2O Connection ip: localhost
H2O Connection port: 54321
H2O Connection proxy: NA
H2O Internal Security: FALSE
H2O API Extensions: Amazon S3, XGBoost, Algos, AutoML, Core V3, Core V4
R Version: R version 3.6.1 (2019-07-05)

Things to note:

• We did not install the H2O server; install.packages("h2o") did it for us.
• h2o.init fires the H2O server. Use nthreads to manually control the number of threads, or use the defaults.

“H2O cluster total cores” informs you of the number of potential cores. “H2O cluster allowed cores” was set by
nthreads, and informs of the number of actual cores that will be used.

• Read ?h2o.init for the (massive) list of configuration parameters available.
h2o.no_progress() # to supress progress bars.
data("spam", package = 'ElemStatLearn')
spam.h2o <- as.h2o(spam, destination_frame = "spam.hex") # load to the H2O server
h2o.ls() # check avaialbe data in the server

key
1 modelmetrics_our.rf@3989552057676729726_on_RTMP_sid_a8ca_10@1783194943144526592
2 our.rf
3 predictions_83a8_our.rf_on_RTMP_sid_a8ca_12
4 predictions_8b59_our.rf_on_RTMP_sid_a49b_6
5 spam.hex
h2o.describe(spam.h2o) %>% head # the H2O version of summary()

Label Type Missing Zeros PosInf NegInf Min Max Mean Sigma
1 A.1 real 0 3548 0 0 0 4.54 0.10455336 0.3053576
2 A.2 real 0 3703 0 0 0 14.28 0.21301456 1.2905752
3 A.3 real 0 2713 0 0 0 5.10 0.28065638 0.5041429
4 A.4 real 0 4554 0 0 0 42.81 0.06542491 1.3951514
5 A.5 real 0 2853 0 0 0 10.00 0.31222343 0.6725128
6 A.6 real 0 3602 0 0 0 5.88 0.09590089 0.2738241
Cardinality
1 NA
2 NA

213

16.5. CAUTION: NESTED PARALLELISM CHAPTER 16. PARALLEL COMPUTING

3 NA
4 NA
5 NA
6 NA
h2o.table(spam.h2o$spam)

spam Count
1 email 2788
2 spam 1813
##
[2 rows x 2 columns]
Split to train and test
splits <- h2o.splitFrame(data = spam.h2o, ratios = c(0.8))
train <- splits[[1]]
test <- splits[[2]]

Fit a random forest
rf <- h2o.randomForest(
x = names(spam.h2o)[-58],
y = c("spam"),
training_frame = train,
model_id = "our.rf")

Predict on test set
predictions <- h2o.predict(rf, test)
head(predictions)

predict email spam
1 spam 0.03122449 0.9687755
2 spam 0.02122449 0.9787755
3 email 0.61658518 0.3834148
4 spam 0.22357143 0.7764286
5 spam 0.02000000 0.9800000
6 spam 0.17714286 0.8228571

Things to note:

• H2O objects behave a lot like data.frame/tables.
• To compute on H2O objects, you need dedicated function. They typically start with “h2o” such as h2o.table,

and h2o.randomForest.
• h2o.randomForest, and other H2O functions, have their own syntax with many many options. Make sure to

read ?h2o.randomForest.

16.4.4.1 Sparkling-Water

The h2o package (16.4.4) works with H2OFrame class objects. If your data is stored in Spark, it may be more natural
to work with Spark DataFrames instead of H2OFrames. This is exactly the purpose of the Sparkling-Water36 system.
R users can connect to it using the RSparkling37 package, written and maintained by H2O.

16.5 Caution: Nested Parallelism
A common problem when parallelising is that the processes you invoke explicitely, may themselves invoke other
processes. Consider a user forking multiple processes, each process calling data.table, which itself will invoke multiple
threads. This is called nested parallelism, and may cause you to lose control of the number of machine being invoked.
The operating system will spend most of its time with housekeeping, instead of doing your computations. Luckily,
data.table was designed to avoid this.

36https://www.h2o.ai/products/h2o-sparkling-water/
37http://docs.h2o.ai/sparkling-water/2.2/latest-stable/doc/rsparkling.html

214

https://www.h2o.ai/products/h2o-sparkling-water/
http://docs.h2o.ai/sparkling-water/2.2/latest-stable/doc/rsparkling.html

CHAPTER 16. PARALLEL COMPUTING 16.6. BIBLIOGRAPHIC NOTES

If you are parallelising your linear algebra with OpenBLAS, you may control nested parallelism with the package
RhpcBLASctl38. In other cases, you should be aware of this, and may need to consult an expert.

16.6 Bibliographic Notes
To understand how computers work in general, see Bryant and O’Hallaron (2015). For a brief and excellent explanation
on parallel computing in R see Schmidberger et al. (2009). For a full review see Chapple et al. (2016). For a blog-
level introduction see ParallelR39. For an up-to-date list of packages supporting parallel programming see the High
Performance Computing R task view40. For some theory of distributed machine learning, see Rosenblatt and Nadler
(2016).

An excellent video explaining data.table and H2O, by the author of ‘data.table, is this41. More benchmarks in
here42. More on Spark with R in Mastering Apache Spark with R43.

For a blog level introduction to linear algebra in R see Joseph Rickert’s entry44. For a detailed discussion see Oancea
et al. (2015).

16.7 Practice Yourself
TODO

Try DataCamp’s Parallel Programming in R45.

38https://cran.r-project.org/package=RhpcBLASctl
39http://www.parallelr.com/r-with-parallel-computing/
40https://cran.r-project.org/web/views/HighPerformanceComputing.html
41https://www.youtube.com/watch?v=5X7h1rZGVs0
42https://h2oai.github.io/db-benchmark/
43https://therinspark.com
44https://blog.revolutionanalytics.com/2013/08/r-and-linear-algebra.html
45https://www.datacamp.com/courses/parallel-programming-in-r

215

https://cran.r-project.org/package=RhpcBLASctl
http://www.parallelr.com/r-with-parallel-computing/
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://www.youtube.com/watch?v=5X7h1rZGVs0
https://h2oai.github.io/db-benchmark/
https://therinspark.com
https://blog.revolutionanalytics.com/2013/08/r-and-linear-algebra.html
https://www.datacamp.com/courses/parallel-programming-in-r

16.7. PRACTICE YOURSELF CHAPTER 16. PARALLEL COMPUTING

216

Chapter 17

Numerical Linear Algebra

In your algebra courses you would write 𝐴𝑥 = 𝑏 and solve 𝑥 = 𝐴−1𝑏. This is useful to understand the algebraic
properties of 𝑥, but a computer would never recover 𝑥 that way. Even the computation of the sample variance,
𝑆2(𝑥) = (𝑛 − 1)−1 ∑(𝑥𝑖 − ̄𝑥)2 is not solved that way in a computer, because of numerical and speed considerations.

In this chapter, we discuss several ways a computer solves systems of linear equations, with their application to
statistics, namely, to OLS problems.

17.1 LU Factorization
Definition 17.1 (LU Factorization). For some matrix 𝐴, the LU factorization is defined as

𝐴 = 𝐿𝑈 (17.1)

where 𝐿 is unit lower triangular and 𝑈 is upper triangular.

The LU factorization is essentially the matrix notation for the Gaussian elimination1 you did in your introductory
algebra courses.

For a square 𝑛 × 𝑛 matrix, the LU factorization requires 𝑛3/3 operations, and stores 𝑛2 + 𝑛 elements in memory.

17.2 Cholesky Factorization
Definition 17.2 (Non Negative Matrix). A matrix 𝐴 is said to be non-negative if 𝑥′𝐴𝑥 ≥ 0 for all 𝑥.

Seeing the matrix 𝐴 as a function, non-negative matrices can be thought of as functions that generalize the squaring
operation.

Definition 17.3 (Cholesky Factorization). For some non-negative matrix 𝐴, the Cholesky factorization is defined as

𝐴 = 𝑇 ′𝑇 (17.2)

where 𝑇 is upper triangular with positive diagonal elements.

For obvious reasons, the Cholesky factorization is known as the square root of a matrix.

Because Cholesky is less general than LU, it is also more efficient. It can be computed in 𝑛3/6 operations, and requires
storing 𝑛(𝑛 + 1)/2 elements.

1https://en.wikipedia.org/wiki/Gaussian_elimination

217

https://en.wikipedia.org/wiki/Gaussian_elimination

17.3. QR FACTORIZATION CHAPTER 17. NUMERICAL LINEAR ALGEBRA

17.3 QR Factorization
Definition 17.4 (QR Factorization). For some matrix 𝐴, the QR factorization is defined as

𝐴 = 𝑄𝑅 (17.3)

where 𝑄 is orthogonal and 𝑅 is upper triangular.

The QR factorization is very useful to solve the OLS problem as we will see in 17.6. The QR factorization takes 2𝑛3/3
operations to compute. Three major methods for computing the QR factorization exist. These rely on Householder
transformations, Givens transformations, and a (modified) Gram-Schmidt procedure (Gentle, 2012).

17.4 Singular Value Factorization
Definition 17.5 (SVD). For an arbitrary 𝑛 × 𝑚 matrix 𝐴, the singular valued decomposition (SVD), is defined as

𝐴 = 𝑈Σ𝑉 ′ (17.4)

where 𝑈 is an orthonormal 𝑛 × 𝑛 matrix, 𝑉 is an 𝑚 × 𝑚 orthonormal matrix, and Σ is diagonal.

The SVD factorization is very useful for algebraic analysis, but less so for computations. This is because it is (typically)
solved via the QR factorization.

17.5 Iterative Methods
The various matrix factorizations above may be used to solve a system of linear equations, and in particular, the
OLS problem. There is, however, a very different approach to solving systems of linear equations. This approach
relies on the fact that solutions of linear systems of equations, can be cast as optimization problems: simply find 𝑥 by
minimizing ‖𝐴𝑥 − 𝑏‖.
Some methods for solving (convex) optimization problems are reviewed in the Convex Optimization Chapter 18. For
our purposes we will just mention that historically (this means in the lm function, and in the LAPACK numerical
libraries) the factorization approach was preferred, and now optimization approaches are preferred. This is because
the optimization approach is more numerically stable, and easier to parallelize.

17.6 Solving the OLS Problem
Recalling the OLS problem in Eq.(6.5): we wish to find 𝛽 such that

̂𝛽 ∶= 𝑎𝑟𝑔𝑚𝑖𝑛𝛽{‖𝑦 − 𝑋𝛽‖2
2}. (17.5)

The solution, ̂𝛽 that solves this problem has to satisfy

𝑋′𝑋𝛽 = 𝑋′𝑦. (17.6)

Eq.(17.6) are known as the normal equations. The normal equations are the link between the OLS problem, and the
matrix factorization discussed above.

Using the QR decomposition in the normal equations we have that

̂𝛽 = 𝑅−1
(1∶𝑝,1∶𝑝)𝑦,

where (𝑅𝑛×𝑝) = (𝑅(1∶𝑝,1∶𝑝), 0(𝑝+1∶𝑛,1∶𝑝)) is the

218

CHAPTER 17. NUMERICAL LINEAR ALGEBRA 17.7. NUMERICAL LIBRARIES FOR LINEAR ALGEBRA

17.7 Numerical Libraries for Linear Algebra
TODO. In the meanwhile: comparison of numerical libraries2; installing MKL in Ubnutu3; how to speed-up linear
algebra in R4; and another5; install Open-Blas6;

17.7.1 OpenBlas
17.7.2 MKL

17.8 Bibliographic Notes
For an excellent introduction to numerical algorithms in statistics, see Weihs et al. (2013). For an emphasis on
numerical linear algebra, see Gentle (2012), and Golub and Van Loan (2012).

17.9 Practice Yourself

2https://en.wikipedia.org/wiki/Comparison_of_linear_algebra_libraries
3http://dirk.eddelbuettel.com/blog/2018/04/15/#018_mkl_for_debian_ubuntu
4https://www.r-bloggers.com/why-is-r-slow-some-explanations-and-mklopenblas-setup-to-try-to-fix-this/
5https://www.r-bloggers.com/for-faster-r-use-openblas-instead-better-than-atlas-trivial-to-switch-to-on-ubuntu/
6https://gist.github.com/pachamaltese/e4b819ccf537d465a8d49e6d60252d89

219

https://en.wikipedia.org/wiki/Comparison_of_linear_algebra_libraries
http://dirk.eddelbuettel.com/blog/2018/04/15/#018_mkl_for_debian_ubuntu
https://www.r-bloggers.com/why-is-r-slow-some-explanations-and-mklopenblas-setup-to-try-to-fix-this/
https://www.r-bloggers.com/for-faster-r-use-openblas-instead-better-than-atlas-trivial-to-switch-to-on-ubuntu/
https://gist.github.com/pachamaltese/e4b819ccf537d465a8d49e6d60252d89

17.9. PRACTICE YOURSELF CHAPTER 17. NUMERICAL LINEAR ALGEBRA

220

Chapter 18

Convex Optimization

TODO

18.1 Theoretical Backround

18.2 Optimizing with R
18.2.1 The optim Function
18.2.2 The nloptr Package
18.2.3 minqa Package

18.3 Bibliographic Notes
Task views1

18.4 Practice Yourself

1https://cran.r-project.org/web/views/Optimization.html

221

https://cran.r-project.org/web/views/Optimization.html

18.4. PRACTICE YOURSELF CHAPTER 18. CONVEX OPTIMIZATION

222

Chapter 19

RCpp

19.1 Bibliographic Notes

19.2 Practice Yourself

223

19.2. PRACTICE YOURSELF CHAPTER 19. RCPP

224

Chapter 20

Debugging Tools

TODO. In the meanwhile, get started with Wickham (2011), and get pro with Cotton (2017).

20.1 Bibliographic Notes

20.2 Practice Yourself

225

20.2. PRACTICE YOURSELF CHAPTER 20. DEBUGGING TOOLS

226

Chapter 21

The Hadleyverse

The Hadleyverse, short for “Hadley Wickham’s universe”, is a set of packages that make it easier to handle data. If
you are developing packages, you should be careful since using these packages may create many dependencies and
compatibility issues. If you are analyzing data, and the portability of your functions to other users, machines, and
operating systems is not of a concern, you will LOVE these packages. The term Hadleyverse refers to all of Hadley’s
packages, but here, we mention only a useful subset, which can be collectively installed via the tidyverse package:

• ggplot2 for data visualization. See the Plotting Chapter 12.
• dplyr for data manipulation.
• tidyr for data tidying.
• readr for data import.
• stringr for character strings.
• anytime for time data.

21.1 readr
The readr package (Wickham et al., 2016) replaces base functions for importing and exporting data such as
read.table. It is faster, with a cleaner syntax.

We will not go into the details and refer the reader to the official documentation here1 and the R for data sciecne2

book.

21.2 dplyr
When you think of data frame operations, think dplyr (Wickham and Francois, 2016). Notable utilities in the package
include:

• select() Select columns from a data frame.
• filter() Filter rows according to some condition(s).
• arrange() Sort / Re-order rows in a data frame.
• mutate() Create new columns or transform existing ones.
• group_by() Group a data frame by some factor(s) usually in conjunction to summary.
• summarize() Summarize some values from the data frame or across groups.
• inner_join(x,y,by="col")return all rows from ‘x’ where there are matching values in ‘x’, and all columns from

‘x’ and ‘y’. If there are multiple matches between ‘x’ and ‘y’, all combination of the matches are returned.
• left_join(x,y,by="col") return all rows from ‘x’, and all columns from ‘x’ and ‘y’. Rows in ‘x’ with no

match in ‘y’ will have ‘NA’ values in the new columns. If there are multiple matches between ‘x’ and ‘y’, all
combinations of the matches are returned.

1http://readr.tidyverse.org/articles/readr.html
2http://r4ds.had.co.nz/data-import.html

227

http://readr.tidyverse.org/articles/readr.html
http://r4ds.had.co.nz/data-import.html

21.2. DPLYR CHAPTER 21. THE HADLEYVERSE

• right_join(x,y,by="col") return all rows from ‘y’, and all columns from ‘x’ and y. Rows in ‘y’ with no
match in ‘x’ will have ‘NA’ values in the new columns. If there are multiple matches between ‘x’ and ‘y’, all
combinations of the matches are returned.

• anti_join(x,y,by="col") return all rows from ‘x’ where there are not matching values in ‘y’, keeping just
columns from ‘x’.

The following example involve data.frame objects, but dplyr can handle other classes. In particular data.tables
from the data.table package (Dowle and Srinivasan, 2017), which is designed for very large data sets.

dplyr can work with data stored in a database. In which case, it will convert your command to the appropriate SQL
syntax, and issue it to the database. This has the advantage that (a) you do not need to know the specific SQL
implementation of your database, and (b), you can enjoy the optimized algorithms provided by the database supplier.
For more on this, see the databses vignette3.

The following examples are taken from Kevin Markham4. The nycflights13::flights has delay data for US flights.
library(nycflights13)
flights

A tibble: 336,776 x 20
year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>
1 2013 1 1 517 515 2 830
2 2013 1 1 533 529 4 850
3 2013 1 1 542 540 2 923
4 2013 1 1 544 545 -1 1004
5 2013 1 1 554 600 -6 812
6 2013 1 1 554 558 -4 740
7 2013 1 1 555 600 -5 913
8 2013 1 1 557 600 -3 709
9 2013 1 1 557 600 -3 838
10 2013 1 1 558 600 -2 753
... with 336,766 more rows, and 13 more variables: sched_arr_time <int>,
arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>,
origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
minute <dbl>, time_hour <dttm>, ind <int>

The data is of class tbl_df which is an extension of the data.frame class, designed for large data sets. Notice that
the printing of flights is short, even without calling the head function. This is a feature of the tbl_df class (
print(data.frame) would try to load all the data, thus take a long time).
class(flights) # a tbl_df is an extension of the data.frame class

[1] "tbl_df" "tbl" "data.frame"

Let’s filter the observations from the first day of the first month. Notice how much better (i.e. readable) is the dplyr
syntax, with piping, compared to the basic syntax.
flights[flights$month == 1 & flights$day == 1,] # old style

library(dplyr)
filter(flights, month == 1, day == 1) #dplyr style
flights %>% filter(month == 1, day == 1) # dplyr with piping.

More filtering.
filter(flights, month == 1 | month == 2) # First OR second month.
slice(flights, 1:10) # selects first ten rows.

arrange(flights, year, month, day) # sort

3https://cran.r-project.org/web/packages/dplyr/vignettes/databases.html
4https://github.com/justmarkham/dplyr-tutorial/blob/master/dplyr-tutorial.Rmd

228

https://cran.r-project.org/web/packages/dplyr/vignettes/databases.html
https://github.com/justmarkham/dplyr-tutorial/blob/master/dplyr-tutorial.Rmd

CHAPTER 21. THE HADLEYVERSE 21.2. DPLYR

arrange(flights, desc(arr_delay)) # sort descending

select(flights, year, month, day) # select columns year, month, and day
select(flights, year:day) # select column range
select(flights, -(year:day)) # drop columns
rename(flights, c(tail_num = "tailnum")) # rename column

add a new computed colume
mutate(flights,
gain = arr_delay - dep_delay,
speed = distance / air_time * 60)

you can refer to columns you just created! (gain)
mutate(flights,
gain = arr_delay - dep_delay,
gain_per_hour = gain / (air_time / 60)

)

keep only new variables, not all data frame.
transmute(flights,
gain = arr_delay - dep_delay,
gain_per_hour = gain / (air_time / 60)

)

simple statistics
summarise(flights,
delay = mean(dep_delay, na.rm = TRUE)
)

random subsample
sample_n(flights, 10)
sample_frac(flights, 0.01)

We now perform operations on subgroups. we group observations along the plane’s tail number (tailnum), and
compute the count, average distance traveled, and average delay. We group with group_by, and compute subgroup
statistics with summarise.
by_tailnum <- group_by(flights, tailnum)

delay <- summarise(by_tailnum,
count = length(),
avg.dist = mean(distance, na.rm = TRUE),
avg.delay = mean(arr_delay, na.rm = TRUE))

delay

We can group along several variables, with a hierarchy. We then collapse the hierarchy one by one.
daily <- group_by(flights, year, month, day)
per_day <- summarise(daily, flights = n())
per_month <- summarise(per_day, flights = sum(flights))
per_year <- summarise(per_month, flights = sum(flights))

Things to note:

• Every call to summarise collapses one level in the hierarchy of grouping. The output of group_by recalls the
hierarchy of aggregation, and collapses along this hierarchy.

We can use dplyr for two table operations, i.e., joins. For this, we join the flight data, with the airplane data in
airplanes.

229

21.2. DPLYR CHAPTER 21. THE HADLEYVERSE

library(dplyr)
airlines

A tibble: 16 x 2
carrier name
<chr> <chr>
1 9E Endeavor Air Inc.
2 AA American Airlines Inc.
3 AS Alaska Airlines Inc.
4 B6 JetBlue Airways
5 DL Delta Air Lines Inc.
6 EV ExpressJet Airlines Inc.
7 F9 Frontier Airlines Inc.
8 FL AirTran Airways Corporation
9 HA Hawaiian Airlines Inc.
10 MQ Envoy Air
11 OO SkyWest Airlines Inc.
12 UA United Air Lines Inc.
13 US US Airways Inc.
14 VX Virgin America
15 WN Southwest Airlines Co.
16 YV Mesa Airlines Inc.
select the subset of interesting flight data.
flights2 <- flights %>% select(year:day, hour, origin, dest, tailnum, carrier)

join on left table with automatic matching.
flights2 %>% left_join(airlines)

A tibble: 336,776 x 9
year month day hour origin dest tailnum carrier name
<int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr>
1 2013 1 1 5 EWR IAH N14228 UA United Air Lines I~
2 2013 1 1 5 LGA IAH N24211 UA United Air Lines I~
3 2013 1 1 5 JFK MIA N619AA AA American Airlines ~
4 2013 1 1 5 JFK BQN N804JB B6 JetBlue Airways
5 2013 1 1 6 LGA ATL N668DN DL Delta Air Lines In~
6 2013 1 1 5 EWR ORD N39463 UA United Air Lines I~
7 2013 1 1 6 EWR FLL N516JB B6 JetBlue Airways
8 2013 1 1 6 LGA IAD N829AS EV ExpressJet Airline~
9 2013 1 1 6 JFK MCO N593JB B6 JetBlue Airways
10 2013 1 1 6 LGA ORD N3ALAA AA American Airlines ~
... with 336,766 more rows
flights2 %>% left_join(weather)

A tibble: 336,776 x 18
year month day hour origin dest tailnum carrier temp dewp humid
<dbl> <dbl> <int> <dbl> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
1 2013 1 1 5 EWR IAH N14228 UA 39.0 28.0 64.4
2 2013 1 1 5 LGA IAH N24211 UA 39.9 25.0 54.8
3 2013 1 1 5 JFK MIA N619AA AA 39.0 27.0 61.6
4 2013 1 1 5 JFK BQN N804JB B6 39.0 27.0 61.6
5 2013 1 1 6 LGA ATL N668DN DL 39.9 25.0 54.8
6 2013 1 1 5 EWR ORD N39463 UA 39.0 28.0 64.4
7 2013 1 1 6 EWR FLL N516JB B6 37.9 28.0 67.2
8 2013 1 1 6 LGA IAD N829AS EV 39.9 25.0 54.8
9 2013 1 1 6 JFK MCO N593JB B6 37.9 27.0 64.3
10 2013 1 1 6 LGA ORD N3ALAA AA 39.9 25.0 54.8

230

CHAPTER 21. THE HADLEYVERSE 21.2. DPLYR

... with 336,766 more rows, and 7 more variables: wind_dir <dbl>,
wind_speed <dbl>, wind_gust <dbl>, precip <dbl>, pressure <dbl>,
visib <dbl>, time_hour <dttm>
join with named matching
flights2 %>% left_join(planes, by = "tailnum")

A tibble: 336,776 x 16
year.x month day hour origin dest tailnum carrier year.y type
<int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <int> <chr>
1 2013 1 1 5 EWR IAH N14228 UA 1999 Fixe~
2 2013 1 1 5 LGA IAH N24211 UA 1998 Fixe~
3 2013 1 1 5 JFK MIA N619AA AA 1990 Fixe~
4 2013 1 1 5 JFK BQN N804JB B6 2012 Fixe~
5 2013 1 1 6 LGA ATL N668DN DL 1991 Fixe~
6 2013 1 1 5 EWR ORD N39463 UA 2012 Fixe~
7 2013 1 1 6 EWR FLL N516JB B6 2000 Fixe~
8 2013 1 1 6 LGA IAD N829AS EV 1998 Fixe~
9 2013 1 1 6 JFK MCO N593JB B6 2004 Fixe~
10 2013 1 1 6 LGA ORD N3ALAA AA NA <NA>
... with 336,766 more rows, and 6 more variables: manufacturer <chr>,
model <chr>, engines <int>, seats <int>, speed <int>, engine <chr>
join with explicit column matching
flights2 %>% left_join(airports, by= c("dest" = "faa"))

A tibble: 336,776 x 15
year month day hour origin dest tailnum carrier name lat lon
<int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
1 2013 1 1 5 EWR IAH N14228 UA Geor~ 30.0 -95.3
2 2013 1 1 5 LGA IAH N24211 UA Geor~ 30.0 -95.3
3 2013 1 1 5 JFK MIA N619AA AA Miam~ 25.8 -80.3
4 2013 1 1 5 JFK BQN N804JB B6 <NA> NA NA
5 2013 1 1 6 LGA ATL N668DN DL Hart~ 33.6 -84.4
6 2013 1 1 5 EWR ORD N39463 UA Chic~ 42.0 -87.9
7 2013 1 1 6 EWR FLL N516JB B6 Fort~ 26.1 -80.2
8 2013 1 1 6 LGA IAD N829AS EV Wash~ 38.9 -77.5
9 2013 1 1 6 JFK MCO N593JB B6 Orla~ 28.4 -81.3
10 2013 1 1 6 LGA ORD N3ALAA AA Chic~ 42.0 -87.9
... with 336,766 more rows, and 4 more variables: alt <int>, tz <dbl>,
dst <chr>, tzone <chr>

Types of join with SQL equivalent.
Create simple data
(df1 <- data_frame(x = c(1, 2), y = 2:1))

A tibble: 2 x 2
x y
<dbl> <int>
1 1 2
2 2 1
(df2 <- data_frame(x = c(1, 3), a = 10, b = "a"))

A tibble: 2 x 3
x a b
<dbl> <dbl> <chr>
1 1 10 a
2 3 10 a

231

21.3. TIDYR CHAPTER 21. THE HADLEYVERSE

Return only matched rows
df1 %>% inner_join(df2) # SELECT * FROM x JOIN y ON x.a = y.a

A tibble: 1 x 4
x y a b
<dbl> <int> <dbl> <chr>
1 1 2 10 a
Return all rows in df1.
df1 %>% left_join(df2) # SELECT * FROM x LEFT JOIN y ON x.a = y.a

A tibble: 2 x 4
x y a b
<dbl> <int> <dbl> <chr>
1 1 2 10 a
2 2 1 NA <NA>
Return all rows in df2.
df1 %>% right_join(df2) # SELECT * FROM x RIGHT JOIN y ON x.a = y.a

A tibble: 2 x 4
x y a b
<dbl> <int> <dbl> <chr>
1 1 2 10 a
2 3 NA 10 a
Return all rows.
df1 %>% full_join(df2) # SELECT * FROM x FULL JOIN y ON x.a = y.a

A tibble: 3 x 4
x y a b
<dbl> <int> <dbl> <chr>
1 1 2 10 a
2 2 1 NA <NA>
3 3 NA 10 a
Like left_join, but returning only columns in df1
df1 %>% semi_join(df2, by = "x") # SELECT * FROM x WHERE EXISTS (SELECT 1 FROM y WHERE x.a = y.a)

A tibble: 1 x 2
x y
<dbl> <int>
1 1 2

21.3 tidyr

21.4 reshape2

21.5 stringr

21.6 anytime

21.7 Biblipgraphic Notes

21.8 Practice Yourself

232

Chapter 22

Causal Inferense

Recall this fun advertisement

How come everyone in the past did not know what every kid knows these days: that cigarettes are bad for you. The
reason is the difficulty in causal inference. Scientists knew about the correlations between smoking and disease, but
no one could prove one caused the other. These could have been nothing more than correlations, with some external
cause.

Cigarettes were declared dangerous without any direct causal evidence. It was in the USA’s surgeon general report
of 19641 that it was decided that despite of the impossibility of showing a direct causal relation, the circumstantial
evidence is just too strong, and declared cigarettes as dangerous.

1https://profiles.nlm.nih.gov/ps/retrieve/Narrative/NN/p-nid/60

233

https://profiles.nlm.nih.gov/ps/retrieve/Narrative/NN/p-nid/60

22.1. CAUSAL INFERENCE FROM DESIGNED EXPERIMENTS CHAPTER 22. CAUSAL INFERENSE

22.1 Causal Inference From Designed Experiments
22.1.1 Design of Experiments
https://cran.r-project.org/web/views/ExperimentalDesign.html

TODO

22.1.2 Randomized Inference
https://dimewiki.worldbank.org/wiki/Randomization_Inference

TODO

22.2 Causal Inference from Observational Data
22.2.1 Principal Stratification
Frumento et al. (2012)

https://en.wikipedia.org/wiki/Principal_stratification

TODO

22.2.2 Instrumental Variables
TODO

22.2.3 Propensity Scores
TODO

22.2.4 Direct Lieklihood
TODO

22.2.5 Regression Discontinuity

22.3 Bibliographic Notes
On the tail behind “smoking causes cancer” see NIH’s Reports of the Surgeon General2.

22.4 Practice Yourself

2https://profiles.nlm.nih.gov/ps/retrieve/Narrative/NN/p-nid/60

234

https://cran.r-project.org/web/views/ExperimentalDesign.html
https://dimewiki.worldbank.org/wiki/Randomization_Inference
https://en.wikipedia.org/wiki/Principal_stratification
https://profiles.nlm.nih.gov/ps/retrieve/Narrative/NN/p-nid/60

Bibliography

Allard, D. (2013). J.-p. chiles, p. delfiner: Geostatistics: Modeling spatial uncertainty.

Analytics, R. and Weston, S. (2015). foreach: Provides Foreach Looping Construct for R. R package version 1.4.3.

Anderson-Cook, C. M. (2004). An introduction to multivariate statistical analysis. Journal of the American Statistical
Association, 99(467):907–909.

Arlot, S., Celisse, A., et al. (2010). A survey of cross-validation procedures for model selection. Statistics surveys,
4:40–79.

Arnold, T., Kane, M., and Urbanek, S. (2015). iotools: High-performance i/o tools for r. arXiv preprint
arXiv:1510.00041.

Bai, Z. and Saranadasa, H. (1996). Effect of high dimension: by an example of a two sample problem. Statistica
Sinica, pages 311–329.

Barr, D. J., Levy, R., Scheepers, C., and Tily, H. J. (2013). Random effects structure for confirmatory hypothesis
testing: Keep it maximal. Journal of memory and language, 68(3):255–278.

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of
Statistical Software, 67(1):1–48.

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency.
Annals of statistics, pages 1165–1188.

Bryant, R. E. and O’Hallaron, D. R. (2015). Computer Systems: A Programmer’s Perspective plus MasteringEngi-
neering with Pearson eText–Access Card Package. Pearson.

Chang, W., Cheng, J., Allaire, J., Xie, Y., and McPherson, J. (2017). shiny: Web Application Framework for R. R
package version 1.0.0.

Chapple, S. R., Troup, E., Forster, T., and Sloan, T. (2016). Mastering Parallel Programming with R. Packt Publishing
Ltd.

Christakos, G. (2000). Modern spatiotemporal geostatistics, volume 6. Oxford University Press.

Conway, D. and White, J. (2012). Machine learning for hackers. ” O’Reilly Media, Inc.”.

Cotton, R. (2017). Testing R Code. Chapman and Hall/CRC.

Cressie, N. and Wikle, C. K. (2015). Statistics for spatio-temporal data. John Wiley and Sons.

Davis, T. A. (2006). Direct methods for sparse linear systems. SIAM.

Diggle, P. J., Tawn, J., and Moyeed, R. (1998). Model-based geostatistics. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 47(3):299–350.

Dowle, M. and Srinivasan, A. (2017). data.table: Extension of ‘data.frame‘. R package version 1.10.4.

Efron, B. (2012). Large-scale inference: empirical Bayes methods for estimation, testing, and prediction, volume 1.
Cambridge University Press.

Eisenhart, C. (1947). The assumptions underlying the analysis of variance. Biometrics, 3(1):1–21.

Everitt, B. and Hothorn, T. (2011). An introduction to applied multivariate analysis with R. Springer Science &
Business Media.

235

BIBLIOGRAPHY BIBLIOGRAPHY

Fithian, W. (2015). Topics in Adaptive Inference. PhD thesis, STANFORD UNIVERSITY.

Foster, D. P. and Stine, R. A. (2004). Variable selection in data mining: Building a predictive model for bankruptcy.
Journal of the American Statistical Association, 99(466):303–313.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical learning, volume 1. Springer series in
statistics Springer, Berlin.

Frumento, P., Mealli, F., Pacini, B., and Rubin, D. B. (2012). Evaluating the effect of training on wages in the presence
of noncompliance, nonemployment, and missing outcome data. Journal of the American Statistical Association,
107(498):450–466.

Gentle, J. E. (2012). Numerical linear algebra for applications in statistics. Springer Science & Business Media.

Gilbert, J. R., Moler, C., and Schreiber, R. (1992). Sparse matrices in matlab: Design and implementation. SIAM
Journal on Matrix Analysis and Applications, 13(1):333–356.

Golub, G. H. and Van Loan, C. F. (2012). Matrix computations, volume 3. JHU Press.

Graham, R. (1988). Isometric embeddings of graphs. Selected Topics in Graph Theory, 3:133–150.

Greene, W. H. (2003). Econometric analysis. Pearson Education India.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of educational
psychology, 24(6):417.

Izenman, A. J. (2008). Modern multivariate statistical techniques. Regression, classification and manifold learning.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical learning, volume 6. Springer.

Javanmard, A. and Montanari, A. (2014). Confidence intervals and hypothesis testing for high-dimensional regression.
Journal of Machine Learning Research, 15(1):2869–2909.

Kalisch, M. and Bühlmann, P. (2014). Causal structure learning and inference: a selective review. Quality Technology
& Quantitative Management, 11(1):3–21.

Kane, M. J., Emerson, J., Weston, S., et al. (2013). Scalable strategies for computing with massive data. Journal of
Statistical Software, 55(14):1–19.

Kempthorne, O. (1975). Fixed and mixed models in the analysis of variance. Biometrics, pages 473–486.

Lantz, B. (2013). Machine learning with R. Packt Publishing Ltd.

Leisch, F. (2002). Sweave: Dynamic generation of statistical reports using literate data analysis. In Compstat, pages
575–580. Springer.

Leskovec, J., Rajaraman, A., and Ullman, J. D. (2014). Mining of massive datasets. Cambridge University Press.

Maechler, M. and Bates, D. (2006). 2nd introduction to the matrix package. R Core Development Team. Accessed on:
https://stat. ethz. ch/R-manual/R-devel/library/Matrix/doc/Intro2Matrix. pdf.

McCullagh, P. (1984). Generalized linear models. European Journal of Operational Research, 16(3):285–292.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of machine learning. MIT press.

Oancea, B., Andrei, T., and Dragoescu, R. M. (2015). Accelerating r with high performance linear algebra libraries.
arXiv preprint arXiv:1508.00688.

Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 2(11):559–572.

Pinero, J. and Bates, D. (2000). Mixed-effects models in s and s-plus (statistics and computing).

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria.

Rabinowicz, A. and Rosset, S. (2018). Assessing prediction error at interpolation and extrapolation points. arXiv
preprint arXiv:1802.00996.

Ripley, B. D. (2007). Pattern recognition and neural networks. Cambridge university press.

236

BIBLIOGRAPHY BIBLIOGRAPHY

Robinson, G. K. (1991). That blup is a good thing: the estimation of random effects. Statistical science, pages 15–32.

Rosenblatt, J. (2013). A practitioner’s guide to multiple testing error rates. arXiv preprint arXiv:1304.4920.

Rosenblatt, J., Gilron, R., and Mukamel, R. (2016). Better-than-chance classification for signal detection. arXiv
preprint arXiv:1608.08873.

Rosenblatt, J. D. and Benjamini, Y. (2014). Selective correlations; not voodoo. NeuroImage, 103:401–410.

Rosenblatt, J. D. and Nadler, B. (2016). On the optimality of averaging in distributed statistical learning. Information
and Inference: A Journal of the IMA, 5(4):379–404.

Rosset, S. and Tibshirani, R. J. (2018). From fixed-x to random-x regression: Bias-variance decompositions, covariance
penalties, and prediction error estimation. Journal of the American Statistical Association, (just-accepted).

Sammut, C. and Webb, G. I. (2011). Encyclopedia of machine learning. Springer Science & Business Media.

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. Springer, New York. ISBN 978-0-387-75968-5.

Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., and Mansmann, U. (2009). State of the art in
parallel computing with r. Journal of Statistical Software, 47(1).

Searle, S. R., Casella, G., and McCulloch, C. E. (2009). Variance components, volume 391. John Wiley & Sons.

Shah, V. and Gilbert, J. R. (2004). Sparse matrices in matlab* p: Design and implementation. In International
Conference on High-Performance Computing, pages 144–155. Springer.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge
university press.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge university press.

Simes, R. J. (1986). An improved bonferroni procedure for multiple tests of significance. Biometrika, 73(3):751–754.

Small, C. G. (1990). A survey of multidimensional medians. International Statistical Review/Revue Internationale de
Statistique, pages 263–277.

Tukey, J. W. (1977). Exploratory data analysis. Reading, Mass.

Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business media.

Venables, W. N. and Ripley, B. D. (2013). Modern applied statistics with S-PLUS. Springer Science & Business Media.

Venables, W. N., Smith, D. M., Team, R. D. C., et al. (2004). An introduction to r.

Wang, C., Chen, M.-H., Schifano, E., Wu, J., and Yan, J. (2015). Statistical methods and computing for big data.
arXiv preprint arXiv:1502.07989.

Weihs, C., Mersmann, O., and Ligges, U. (2013). Foundations of Statistical Algorithms: With References to R Packages.
CRC Press.

Weiss, R. E. (2005). Modeling longitudinal data. Springer Science & Business Media.

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Wickham, H. (2011). testthat: Get started with testing. The R Journal, 3(1):5–10.

Wickham, H. (2014). Advanced R. CRC Press.

Wickham, H. and Francois, R. (2016). dplyr: A Grammar of Data Manipulation. R package version 0.5.0.

Wickham, H., Hester, J., and Francois, R. (2016). readr: Read Tabular Data. R package version 1.0.0.

Wilcox, R. R. (2011). Introduction to robust estimation and hypothesis testing. Academic Press.

Wilkinson, G. and Rogers, C. (1973). Symbolic description of factorial models for analysis of variance. Applied
Statistics, pages 392–399.

Wilkinson, L. (2006). The grammar of graphics. Springer Science & Business Media.

Xie, Y. (2015). Dynamic Documents with R and knitr, volume 29. CRC Press.

Xie, Y. (2016). bookdown: Authoring Books and Technical Documents with R Markdown. CRC Press.

237

	Preface
	Notation Conventions
	Acknowledgements

	Introduction
	What is R?
	The R Ecosystem
	Bibliographic Notes

	R Basics
	File types
	Simple calculator
	Probability calculator
	Getting Help
	Variable Assignment
	Missing
	Piping
	Vector Creation and Manipulation
	Search Paths and Packages
	Simple Plotting
	Object Types
	Data Frames
	Exctraction
	Augmentations of the data.frame class
	Data Import and Export
	Functions
	Looping
	Apply
	Recursion
	Strings
	Dates and Times
	Complex Objects
	Vectors and Matrix Products
	RStudio Projects
	Bibliographic Notes
	Practice Yourself

	data.table
	Make your own variables
	Join
	Reshaping data
	Bibliographic Notes
	Practice Yourself

	Exploratory Data Analysis
	Summary Statistics
	Visualization
	Mixed Type Data
	Bibliographic Notes
	Practice Yourself

	Linear Models
	Problem Setup
	OLS Estimation in R
	Inference
	Extra Diagnostics
	Bibliographic Notes
	Practice Yourself

	Generalized Linear Models
	Problem Setup
	Logistic Regression
	Poisson Regression
	Extensions
	Bibliographic Notes
	Practice Yourself

	Linear Mixed Models
	Problem Setup
	LMMs in R
	Serial Correlations in Space/Time
	Extensions
	Bibliographic Notes
	Practice Yourself

	Multivariate Data Analysis
	Signal Detection
	Signal Counting
	Signal Identification
	Signal Estimation (*)
	Bibliographic Notes
	Practice Yourself

	Supervised Learning
	Problem Setup
	Supervised Learning in R
	Bibliographic Notes
	Practice Yourself

	Unsupervised Learning
	Dimensionality Reduction
	Clustering
	Bibliographic Notes
	Practice Yourself

	Plotting
	The graphics System
	The ggplot2 System
	Interactive Graphics
	Other R Interfaces to JavaScript Plotting
	Bibliographic Notes
	Practice Yourself

	Reports
	knitr
	bookdown
	Shiny
	flexdashboard
	Bibliographic Notes
	Practice Yourself

	Sparse Representations
	Sparse Matrix Representations
	Sparse Matrices and Sparse Models in R
	Beyond Sparsity
	Apache Arrow
	Bibliographic Notes
	Practice Yourself

	Memory Efficiency
	Efficient Computing from RAM
	Computing from a Database
	Computing From Efficient File Structrures
	ff
	disk.frame
	matter
	iotools
	HDF5
	DelayedArray
	Computing from a Distributed File System
	Bibliographic Notes
	Practice Yourself

	Parallel Computing
	When and How to Parallelise?
	Terminology
	Parallel R
	Parallel Extensions
	Caution: Nested Parallelism
	Bibliographic Notes
	Practice Yourself

	Numerical Linear Algebra
	LU Factorization
	Cholesky Factorization
	QR Factorization
	Singular Value Factorization
	Iterative Methods
	Solving the OLS Problem
	Numerical Libraries for Linear Algebra
	Bibliographic Notes
	Practice Yourself

	Convex Optimization
	Theoretical Backround
	Optimizing with R
	Bibliographic Notes
	Practice Yourself

	RCpp
	Bibliographic Notes
	Practice Yourself

	Debugging Tools
	Bibliographic Notes
	Practice Yourself

	The Hadleyverse
	readr
	dplyr
	tidyr
	reshape2
	stringr
	anytime
	Biblipgraphic Notes
	Practice Yourself

	Causal Inferense
	Causal Inference From Designed Experiments
	Causal Inference from Observational Data
	Bibliographic Notes
	Practice Yourself

